Cover image for Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems
Title:
Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems
Personal Author:
Edition:
3rd ed.
Publication Information:
London : IWA Publishing, 2003
ISBN:
9781566706476

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010082764 TD756 J46 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

The most common activated sludge operating problems causing poor plant performance are related to solids separation. Especially common are bulking and foaming. Without a proper scientific foundation to support the efforts of wastewater treatment plant management, many attempts to thwart bulking and foaming have failed.

Manual on Solving Activated Sludge Bulking, Foaming, and Other Solids Separation Problems provides the critical scientific and practical underpinnings needed to understand and combat these problems. The third edition of this flagship text is a comprehensive, concise guide to the microbiological and technical aspects of controlling all types of solid separation problems.

The scientific theory is applied to real-world scenarios, greatly increasing the number of real-world examples of successful control methods. New information is also included on filamentous organism growth and its application in the control of sludge bulking and foaming. Now plant operators, regulators and wastewater engineers have a complete guide for battling these formidable design and operating problems.


Author Notes

David Jenkins is also the author of Training Speed and Endurance. He is also a sports scientists and has a Ph.D. in exercise physiology.

(Bowker Author Biography)


Table of Contents

Chapter 1 Solids Separation Problemsp. 1
I. Introductionp. 1
II. Solids Separation Problemsp. 1
III. Activated Sludge Flocp. 1
IV. Solids Separation Problems in Terms of Floc Structurep. 3
A. Dispersed Growthp. 3
B. Viscous Bulkingp. 3
C. Pin Flocp. 4
D. Filamentous Bulkingp. 4
E. Foam/Scump. 5
V. Differentiation of Microbial and Process-Related Solids Separation Problemsp. 7
Chapter 2 Methodsp. 9
I. Introductionp. 9
II. Microscopic Examination Methodsp. 9
A. Filament Counting Methodsp. 9
1. Total Extended Filament Lengthp. 9
2. Filament Countp. 9
3. Nocardioform Filament Organism Countingp. 9
B. Floc and Filamentous Microorganism Characterizationp. 9
1. Introductionp. 9
2. Sampling Pointsp. 10
3. Sampling Frequencyp. 11
4. Sample Transport and Storagep. 11
5. Microscopep. 12
6. Camerasp. 13
7. Staining Proceduresp. 13
8. Sample Preparationp. 13
9. Floc Characteristics and Overall Filament Abundancep. 14
a. Floc Sizep. 15
b. Floc Characteristicsp. 15
c. Protozoa and Other Macroorganismsp. 15
d. Nonbiological Organic and Inorganic Particlesp. 15
e. Bacterial Coloniesp. 15
f. Cells Dispersed in Bulk Solutionp. 16
g. Effects of Filamentous Organisms on Floc Structurep. 17
h. Filamentous Organism Abundancep. 17
10. Filamentous Organism Characteristicsp. 17
a. Branchingp. 17
b. Motilityp. 18
c. Filament Shapep. 18
d. Locationp. 18
e. Attached Bacteriap. 18
f. Sheathp. 18
g. Cross-Walls (Cell Septa)p. 19
h. Filament Widthp. 19
i. Filament Lengthp. 19
j. Cell Shapep. 19
k. Cell Sizep. 19
l. Sulfur Depositsp. 21
m. Other Granulesp. 21
n. Staining Reactionsp. 21
o. Additional Observationsp. 22
11. Filamentous Organism Identificationp. 23
a. Using the Dichotomous Keyp. 23
b. Building Your Skillsp. 23
12. Filamentous Organism Descriptionsp. 23
a. Sphaerotilus natans (Figures 2.9c, 2.13b, 2.14f, and 2.21a)p. 24
b. Type 1701 (Figure 2.21b)p. 24
c. Haliscomenobacter hydrossis (Figure 2.21c)p. 27
d. Type 021N (Figures 2.11b, 2.13d, 2.14d, 2.14e, 2.15c, 2.18a, 2.19b, and 2.22a)p. 27
e. Thiothrix I (Figures 2.14b, 2.15a, 2.19c, and 2.23a)p. 27
f. Thiothrix II (Figures 2.19d, 2.23c, and 2.23d)p. 28
g. Type 0914 (Figures 2.15d, 2.24a, and 2.24b)p. 29
h. Beggiatoa sp. (Figures 2.15b, 2.22c, and 2.22d)p. 30
i. Nostocoida limicola I (Figure 2.25a)p. 30
j. Nostocoida limicola II (Figures 2.10e, 2.11c, 2.17b, 2.18e, and 2.25b)p. 32
k. Nostocoida limicola III (Figure 2.25c)p. 33
l. Type 0411 (Figure 2.26a)p. 34
m. Type 0961 (Figure 2.26b)p. 34
n. Type 0092 (Figures 2.18d and 2.26c)p. 35
o. Type 0581 (Figure 2.26d)p. 35
p. Type 0041 (Figures 2.10a, 2.12a, 2.13c, 2.14a, 2.17c, 2.18f, and 2.27a)p. 35
q. Type 0675 (Figure 2.27b)p. 37
r. Type 1851 (Figures 2.17d and 2.27c)p. 37
s. Type 0803 (Figure 2.27d)p. 37
t. Microthrix parvicella (Figures 2.17e, 2.18c, 2.28a, 5.1e, and 5.1f)p. 37
u. Nocardioforms (Figures 2.9b, 2.10f, 2.14g, 2.17f, 2.18b, 2.28b, 5.1a, 5.1b, 5.1c and 5.1d)p. 37
v. Type 1863 (Figures 2.10c, 2.14c, and 2.28c)p. 37
w. Type 0211 (Figure 2.28d)p. 41
x. Flexibacter sp. (Figure 2.29a)p. 43
y. Bacillus sp. (Figure 2.29b)p. 43
z. Cyanophyceae (Figure 2.29c)p. 43
aa. Fungi (Figures 2.9a and 2.29d)p. 43
C. Progress in Identifying Filamentous Organismsp. 44
D. Protozoa And Metazoap. 45
1. Generalp. 45
2. Microscopic Evaluationp. 46
3. Taxonomic Classificationp. 47
a. Flagellatesp. 47
b. Amoebaep. 47
c. Free-Swimming Ciliatesp. 47
d. Attached Ciliatesp. 48
e. Rotifersp. 48
f. Higher Invertebratesp. 48
4. Use of Protozoa and Metazoa as Indicator Organismsp. 48
E. Physical and Chemical Methodsp. 49
1. Settling Testsp. 50
2. Foaming Testsp. 50
3. Methods for Differentiating Microbiological and Process-Related Solids Separation Problemsp. 51
a. Dispersed SS (DSS)p. 51
b. Flocculated SS (FSS)p. 51
c. Secondary Effluent SS (ESS)p. 52
Chapter 3 Applications and Results of Microscopic Examination of Activated Sludgep. 57
I. Introductionp. 57
II. Filament Countingp. 57
III. Filamentous Organism Identification in Activated Sludgep. 58
A. Results of Filamentous Organism Surveysp. 58
B. Diagnosis of Causes of Solids Separation Problems through Microscopic Examinationp. 59
1. Generalp. 59
2. Nonmicrobial Particlesp. 60
3. Other Microbiological Featuresp. 61
a. Generalp. 61
b. Limited Diversityp. 61
c. Dispersed Growthp. 62
d. Neisser-Positive Cell Clumpsp. 65
e. Yeastp. 66
f. Zoogloeasp. 66
g. Selector Flocsp. 66
h. Nitrifying Bacteriap. 67
i. Denitrifying Bacteriap. 67
j. Spirochaetes, Spirillum, and Flexibacterp. 67
k. Exocellular Materialp. 67
l. Algaep. 68
4. Filamentous Organismsp. 69
a. Relationship to Causes of Bulkingp. 69
b. Nutrient Balancep. 69
c. Readily Metabolizable Soluble Organicsp. 69
d. Sulfidep. 70
e. Lipidsp. 70
f. Other Particulate Substratesp. 70
g. Case Studyp. 70
h. Net Growth Rate (MCRT, F/M)p. 71
i. Aeration Basin Configuration and Redox Conditionsp. 71
j. Wastewater Feeding Regimep. 72
k. Foam Trapping Featuresp. 72
l. Upstream Biological Treatment Units, Sewer Surfaces, and In-Plant Surfacesp. 73
m. DO Concentrationp. 73
n. pHp. 73
o. Temperaturep. 73
p. Summaryp. 74
Chapter 4 Control of Activated Sludge Bulking and Other Settling Problemsp. 77
I. Introductionp. 77
II. General Approachp. 77
III. Rapid, Nonspecific Bulking Control Methodsp. 78
A. Manipulation of RAS Flow Rates and Aeration Basin Feed Pointsp. 78
1. Secondary Clarifier Operating Principlesp. 78
2. Activated Sludge Process Schematic and Definitionsp. 78
3. Secondary Clarifier Process Operating Relationshipsp. 78
a. Degree of Thickening Achieved by Secondary Clarifierp. 79
b. Required RAS Flow Ratep. 79
c. Secondary Clarifier Capacityp. 79
4. Sludge Thickening Theoryp. 79
5. Secondary Clarifier Analysis and Operationp. 83
6. System Analysis and Operationp. 85
B. Addition of Chemicals and Inert Solids to Enhance Activated Sludge Settling Ratesp. 87
C. Addition of Disinfectants to Selectively Kill Filamentous Organismsp. 89
1. Generalp. 89
2. Use of Chlorination for Bulking Controlp. 90
a. Chlorination Criteriap. 90
b. General Guidelinesp. 92
c. Chlorination System Designp. 93
d. Monitoring Effects of Chlorine Additionp. 93
3. Case Histories of Bulking Control Using Chlorinationp. 94
a. Generalp. 94
b. City of Albany, GAp. 94
c. City of San Jose/Santa Clara Water Pollution Control Plant, CAp. 96
d. Stroh Brewing Co., Longview, TXp. 97
e. Plastics Manufacturing Wastewater Activated Sludge System, WVp. 98
4. Use of Hydrogen Peroxide for Bulking Controlp. 101
a. Generalp. 101
b. City of Petaluma, CAp. 102
5. Use of Ozone for Bulking Controlp. 102
6. Filamenticidesp. 102
IV. Specific Methods of Bulking Controlp. 102
A. Nutrient Deficiencyp. 103
1. Generalp. 103
2. Macronutrient Deficiencyp. 103
a. Generalp. 103
b. Factors Affecting Macronutrient Requirementsp. 103
c. Availability of Macronutrientsp. 103
d. Satisfying Macronutrient Demandsp. 104
e. Required Residual Macronutrient Concentrationsp. 106
3. Micronutrientsp. 107
B. Low Dissolved Oxygen (DO) Concentrationsp. 108
1. Generalp. 108
2. Case Historiesp. 109
a. Orange County Sanitation District Plant, Fountain Valley, CAp. 109
b. Pulp and Paper Wastewater Activated Sludge Plantp. 109
c. City of Woonsocket, RIp. 109
C. Effect of Aeration Basin Configuration, Wastewater Feeding Method, and Redox Conditions on Activated Sludge Settling Characteristicsp. 110
1. Effect of Aeration Basin Configurationp. 110
2. Selectorsp. 111
3. Selector Effectp. 112
a. General Observationsp. 112
b. Selector Mechanismsp. 112
c. Effects of Selectorsp. 117
4. Selector Design (Sizing)p. 118
a. Generalp. 118
b. Initial Contact Zonesp. 118
c. Aerobic Selectorsp. 118
d. Anoxic Selectorsp. 119
e. Anaerobic Selectorsp. 120
f. Main Aeration Basinp. 120
5. Selector Case Historiesp. 120
a. Leopoldsdorf Sugar Mill, Austriap. 120
b. Hamilton, OHp. 120
c. Davenport, IAp. 122
d. Tri-City, Clackamas County, ORp. 123
e. Fayetteville, ARp. 124
f. Hyperion Treatment Plant, Los Angeles, CAp. 125
g. 23rd Avenue Plant, Phoenix, AZp. 125
6. Situations Where Selectors Are Not Effectivep. 126
V. High Effluent SS Due to Clarification Problemsp. 127
A. Generalp. 127
B. Problem Definitionp. 128
1. Method of Investigationp. 128
2. Resultsp. 128
3. Problem Resolutionp. 128
a. Inadequate Flocculation, Floc Break-Up (High ESS, High DSS[subscript i], Low FSS)p. 128
b. Clarifier Hydraulic Problems (High ESS, Low DSS, Low FSS)p. 129
c. Bioflocculation Problems (High DSS[subscript i], High FSS, High ESS)p. 129
Chapter 5 Activated Sludge Foaming and Controlp. 131
I. Activated Sludge Foamingp. 131
A. Types of Activated Sludge Foamp. 131
II. Nocardioform Foamingp. 132
A. Extent and Significance of Problemsp. 132
1. Foaming Organism Surveysp. 132
2. Foaming Problemsp. 132
a. Activated Sludgep. 132
b. Anaerobic Digestersp. 133
c. Pathogenic Nocardioformsp. 135
B. Proposed Mechanisms of Foamingp. 135
1. Introductionp. 135
2. Physical/Chemical Factorsp. 135
a. Nature of Foamp. 135
b. Solids-Containing Foamsp. 136
c. Roles of Surfactantsp. 136
d. Anaerobic Digester Foamingp. 137
e. Foam Trapping and Recyclingp. 137
f. Foaming Testsp. 139
3. Microbiological Factorsp. 140
a. Factors Affecting Growthp. 140
b. MCRT and Temperaturep. 141
c. pHp. 143
III. Nocardioform Controlp. 144
A. Nocardioform Growth in Activated Sludgep. 144
1. Introductionp. 144
2. Aerobic Selectorsp. 144
3. Anoxic Selectorsp. 146
4. Anaerobic Selectorsp. 147
5. Classifying Selectors and Selective Foam Wastingp. 151
6. Chlorinationp. 154
7. Cationic Polymer Additionp. 154
8. Automatic MCRT Controlp. 156
IV. Microthrix parvicellap. 156
A. Factors Affecting M. parvicella Growthp. 156
1. Generalp. 156
2. Substratesp. 156
3. Operating Conditionsp. 156
4. Controlp. 158
5. Case Historiesp. 158
a. Upper Occoquan Sewage Authority (UOSA), VAp. 158
b. Northside Wastewater Treatment Plant, Tulsa, OKp. 159
V. Anaerobic Digester Foamingp. 160
Bibliography and Referencesp. 163
Indexp. 179