Cover image for MIMO radar signal processing
Title:
MIMO radar signal processing
Personal Author:
Publication Information:
Hoboken, NJ : Wiley-IEEE Press, 2009
Physical Description:
xviii, 448 p. : ill. ; 24 cm.
ISBN:
9780470178980
Subject Term:

Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010184616 TK6575 L54 2009 Open Access Book Book
Searching...
Searching...
30000010191454 TK6575 L54 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

The first book to present a systematic and coherent picture of MIMO radars

Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field.

Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes:

Adaptive MIMO radar

Beampattern analysis and optimization for MIMO radar

MIMO radar for target detection, parameter estimation, tracking,association, and recognition

MIMO radar prototypes and measurements

Space-time codes for MIMO radar

Statistical MIMO radar

Waveform design for MIMO radar

Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.


Author Notes

Jian Li, PhD, is Professor and Director of the Spectral Analysis Laboratory of the Department of Electrical and Computer Engineering at the University of Florida. She has coedited one book, coauthored one book and four book chapters, and published approximately 300 refereed technical conference contributions and journal papers, many of which are on topics related to array signal processing.

Petre Stoica, PhD, is Professor of System Modeling in the Information Technology Department at Uppsala University, Sweden. He has coedited two books, coauthored nine books, and published approximately 500 refereed technical conference contributions and journal papers, many of which are on topics related to array signal processing.


Table of Contents

Jian Li and Petre StoricaKeith W. Forsythe and Daniel W. BlissGeoffrey San Antonio and Daniel R. Fuhrmann and Frank C. RobeyJoseph TabrikianBenjamin FriedlanderChun-Yang Chen and P. P. VaidyanathanVito F. Mecca and Dinesh Ramakrishnan and Frank C. Robey and Jeffrey L. KrolikH. D. Griffiths and C. J. Baker and P. F. Sammartino and M. RangaswamyHana Godrich and Alexander M. Haimovich and Rick S. BlumAntonio De Maio and Marco Lops
Prefacep. xiii
Contributorsp. xvii
1 Mimo Radar - Diversity Means Superiorityp. 1
1.1 Introductionp. 1
1.2 Problem Formulationp. 4
1.3 Parameter Identifiabilityp. 5
1.3.1 Preliminary Analysisp. 5
1.3.2 Sufficient and Necessary Conditionsp. 7
1.3.3 Numerical Examplesp. 8
1.4 Nonparametric Adaptive Techniques for Parameter Estimationp. 11
1.4.1 Absence of Array Calibration Errorsp. 12
1.4.2 Presence of Array Calibration Errorsp. 15
1.4.3 Numerical Examplesp. 18
1.5 Parametric Techniques for Parameter Estimationp. 28
1.5.1 ML and BICp. 28
1.5.2 Numerical Examplesp. 34
1.6 Transmit Beampattern Designsp. 35
1.6.1 Beampattern Matching Designp. 35
1.6.2 Minimum Sidelobe Beampattern Designp. 38
1.6.3 Phased-Array Beampattern Designp. 39
1.6.4 Numerical Examplesp. 40
1.6.5 Application to Ultrasound Hyperthermia Treatment of Breast Cancerp. 47
1.7 Conclusionsp. 56
Appendix IA Generalized Likelihood Ratio Testp. 57
Appendix 1B Lemma and Proofp. 59
Acknowledgmentsp. 60
Referencesp. 60
2 MIMO Radar: Concepts, Performance Enhancements, and Applicationsp. 65
2.1 Introductionp. 65
2.1.1 A Short History of Radarp. 65
2.1.2 Definition and Characteristics of MIMO Radarp. 66
2.1.3 Uses of MIMO Radarp. 68
2.1.4 The Current State of MIMO Radar Researchp. 70
2.1.5 Chapter Outlinep. 71
2.2 Notationp. 72
2.3 MIMO Radar Virtual Aperturep. 73
2.3.1 MIMO Channelp. 73
2.3.2 MIMO Virtual Array: Resolution and Sidelobesp. 74
2.4 MIMO Radar in Clutter-Free Environmentsp. 77
2.4.1 Limitations of Cramer-Rao Estimation Boundsp. 77
2.4.2 Signal Modelp. 77
2.4.3 Fisher Information Matrixp. 79
2.4.4 Waveform Correlation Optimizationp. 82
2.4.5 Examplesp. 85
2.5 Optimality of MIMO Radar for Detectionp. 87
2.5.1 Detectionp. 88
2.5.2 High SNRp. 89
2.5.3 Weak-Signal Regimep. 90
2.5.4 Optimal Beamforming without Searchp. 92
2.5.5 Nonfading Targetsp. 92
2.5.6 Some Additional Benefits of MIMO Radarp. 93
2.6 MIMO Radar with Moving Targets in Clutter: GMTI Radarsp. 93
2.6.1 Signal Modelp. 93
2.6.2 Localization and Adapted SNRp. 96
2.6.3 Inner Products and Beamwidthsp. 101
2.6.4 SNR Lossp. 103
2.6.5 SNR Loss and Waveform Optimizationp. 107
2.6.6 Area Search Ratesp. 109
2.6.7 Some Examplesp. 109
2.7 Summaryp. 111
Appendix 2A A Localization Principlep. 111
Appendix 2B Bounds on R(N)p. 114
Appendix 2C An Operator Norm Inequalityp. 115
Appendix 2D Negligible Termsp. 115
Appendix 2E Bound on Eigenvaluesp. 115
Appendix 2F Some Inner Productsp. 116
Appendix 2G An Invariant Inner Productp. 117
Appendix 2H Kronecker and Tensor Productsp. 118
2H.1 Lexicographical Orderingp. 118
2H.2 Tensor and Kronecker Productsp. 118
2H.3 Propertiesp. 119
Acknowledgmentsp. 119
Referencesp. 120
3 Generalized MIMO Radar Ambiguity Functionsp. 123
3.1 Introductionp. 123
3.2 Backgroundp. 124
3.3 MIMO Signal Modelp. 127
3.4 MIMO Parametric Channel Modelp. 131
3.4.1 Transmit Signal Modelp. 131
3.4.2 Channel and Target Modelsp. 132
3.4.3 Received Signal Parametric Modelp. 133
3.5 MIMO Ambiguity Functionp. 134
3.5.1 MIMO Ambiguity Function Compositionp. 137
3.5.2 Cross-Correlation Function under Model Simplificationsp. 138
3.5.3 Autocorrelation Function and Transmit Beampatternsp. 141
3.6 Results and Examplesp. 143
3.6.1 Orthogonal Signalsp. 143
3.6.2 Coherent Signalsp. 147
3.7 Conclusionp. 149
Referencesp. 150
4 Performance Bounds and Techniques for Target Localization Using MIMO Radarsp. 153
4.1 Introductionp. 153
4.2 Problem Formulationp. 155
4.3 Propertiesp. 158
4.3.1 Virtual Aperture Extensionp. 159
4.3.2 Spatial Coverage and Probability of Exposurep. 162
4.3.3 Beampattern Improvementp. 163
4.4 Target Localizationp. 165
4.4.1 Maximum-Likelihood Estimationp. 165
4.4.2 Transmission Diversity Smoothingp. 167
4.5 Performance Lower Bound for Target Localizationp. 170
4.5.1 Cramer-Rao Boundp. 170
4.5.2 The Barankin Boundp. 173
4.6 Simulation Resultsp. 175
4.7 Discussion and Conclusionsp. 180
Appendix 4A Log-Likelihood Derivationp. 181
4A.1 General Modelp. 182
4A.2 Single Range-Doppler with No Interferencep. 184
Appendix 4B Transmit-Receive Pattern Derivationp. 185
Appendix 4C Fisher Information Matrix Derivationp. 186
Referencesp. 189
5 Adaptive Signal Design For MIMO Radarsp. 193
5.1 Introductionp. 193
5.2 Problem Formulationp. 195
5.2.1 Signal Model with Reduced Number of Range Cellsp. 199
5.2.2 Multipulse and Doppler Effectsp. 200
5.2.3 The Complete Modelp. 203
5.2.4 The Statistical Modelp. 203
5.3 Estimationp. 203
5.3.1 Beamforming Solutionp. 204
5.3.2 Least-Squares Solutionsp. 210
5.3.3 Waveform Design for Estimationp. 210
5.4 Detectionp. 214
5.4.1 The Optimal Detectorp. 214
5.4.2 The SINRp. 215
5.4.3 Optimal Waveform Designp. 217
5.4.4 Suboptimal Waveform Designp. 218
5.4.5 Constrained Designp. 219
5.4.6 The Target and Clutter Modelsp. 220
5.4.7 Numerical Examplesp. 221
5.5 MIMO Radar and Phased Arraysp. 226
5.5.1 Scan Transmit Beam after Receivep. 228
5.5.2 Adaptation of Transmit Beampatternp. 229
5.5.3 Combined Transmit-Receive Beamformingp. 229
Appendix 5A Theoretical SINR Calculationp. 231
Referencesp. 232
6 MIMO Radar Spacetime Adaptive Processing and Signal Designp. 235
6.1 Introductionp. 236
6.1.1 Notationsp. 238
6.2 The Virtual Array Conceptp. 238
6.3 Spacetime Adaptive Processing in MIMO Radarp. 242
6.3.1 Signal Modelp. 243
6.3.2 Fully Adaptive MIMO-STAPp. 246
6.3.3 Comparison with SIMO Systemp. 247
6.3.4 The Virtual Array in STAPp. 248
6.4 Clutter Subspace in MIMO Radarp. 249
6.4.1 Clutter Rank in MIMO Radar: MIMO Extension of Brennan's Rulep. 250
6.4.2 Data-Independent Estimation of the Clutter Subspace with PSWFp. 253
6.5 New STAP Method for MIMO Radarp. 257
6.5.1 The Proposed Methodp. 258
6.5.2 Complexity of the New Methodp. 259
6.5.3 Estimation of the Covariance Matricesp. 259
6.5.4 Zero-Forcing Methodp. 260
6.5.5 Comparison with Other Methodsp. 260
6.6 Numerical Examplesp. 261
6.7 Signal Design of the STAP Radar Systemp. 265
6.7.1 MIMO Radar Ambiguity Functionp. 265
6.7.2 Some Properties of the MIMO Ambiguity Functionp. 267
6.7.3 The MIMO Ambiguity Function of Periodic Pulse Radar Signalsp. 272
6.7.4 Frequency-Multiplexed LFM Signalsp. 274
6.7.5 Frequency-Hopping Signalsp. 276
6.8 Conclusionsp. 278
Acknowledgmentsp. 279
Referencesp. 279
7 Slow-Time MIMO SpaceTime Adaptive Processingp. 283
7.1 Introductionp. 283
7.1.1 MIMO Radar and Spatial Diversityp. 284
7.1.2 MIMO and Target Fadingp. 286
7.1.3 MIMO and Processing Gainp. 286
7.2 SIMO Radar Modeling and Processingp. 289
7.2.1 Generalized Transmitted Radar Waveformp. 289
7.2.2 SIMO Target Modelp. 290
7.2.3 SIMO Covariance Modelsp. 291
7.2.4 SIMO Radar Processingp. 292
7.3 Slow-Time MIMO Radar Modelingp. 293
7.3.1 Slow-Time MIMO Target Modelp. 293
7.3.2 Slow-Time MIMO Covariance Modelp. 295
7.4 Slow-Time MIMO Radar Processingp. 297
7.4.1 Slow-Time MIMO Beampattern and VSWRp. 299
7.4.2 Subarray Slow-Time MIMOp. 301
7.4.3 SIMO versus Slow-Time MIMO Design Comparisonsp. 301
7.4.4 MIMO Radar Estimation of Transmit-Receive Directionality Spectrump. 302
7.5 OTHr Propagation and Clutter Modelp. 303
7.6 Simulations Examplesp. 307
7.6.1 Postreceive/Transmit Beamformingp. 307
7.6.2 SINR Performancep. 311
7.6.3 Transmit-Receive Spectrump. 315
7.7 Conclusionp. 316
Acknowledgmentp. 316
Referencesp. 316
8 MIMO as a Distributed Radar Systemp. 319
8.1 Introductionp. 319
8.2 Systemsp. 321
8.2.1 Signal Modelp. 323
8.2.2 Spatial MIMO Systemp. 325
8.2.3 Netted Radar Systemsp. 325
8.2.4 Decentralized Radar Network (DRN)p. 327
8.3 Performancep. 329
8.3.1 False-Alarm Rate (FAR)p. 329
8.3.2 Probability of Detection (P[subscript d])p. 336
8.3.3 Jamming Tolerancep. 348
8.3.4 Coveragep. 352
8.4 Conclusionsp. 359
Acknowledgmentp. 361
Referencesp. 361
9 Concepts and Applications of A MIMO Radar System with Widely Separated Antennasp. 365
9.1 Backgroundp. 365
9.2 MIMO Radar Conceptp. 369
9.2.1 Signal Modelp. 369
9.2.2 Spatial Decorrelationp. 373
9.2.3 Other Multiple Antenna Radarsp. 375
9.3 NonCoherent MIMO Radar Applicationsp. 377
9.3.1 Diversity Gainp. 377
9.3.2 Moving-Target Detectionp. 380
9.4 Coherent MIMO Radar Applicationsp. 383
9.4.1 Ambiguity Functionp. 385
9.4.2 CRLBp. 388
9.4.3 MLE Target Localizationp. 390
9.4.4 BLUE Target Localizationp. 393
9.4.5 GDOPp. 395
9.4.6 Discussionp. 399
9.5 Chapter Summaryp. 399
Appendix 9A Deriving the FIMp. 400
Appendix 9B Deriving the CRLB on the Location Estimate Errorp. 403
Appendix 9C MLE of Time Delays - Error Statisticsp. 405
Appendix 9D Deriving the Lowest GDOP for Special Casesp. 407
9D.1 Special Case: N x N MIMOp. 407
9D.2 Special Case: 1 x N MIMOp. 408
9D.3 General Case: M x N MIMOp. 408
Acknowledgmentsp. 408
Referencesp. 408
10 SpaceTime Coding for MIMO Radarp. 411
10.1 Introductionp. 411
10.2 System Modelp. 415
10.3 Detection In MIMO Radarsp. 417
10.3.1 Full-Rank Code Matrixp. 419
10.3.2 Rank 1 Code Matrixp. 420
10.4 Spacetime Code Designp. 421
10.4.1 Chernoff-Bound-Based (CBB) Code Constructionp. 423
10.4.2 SCR-Based Code Constructionp. 426
10.4.3 Mutual-Information-Based (MIB) Code Constructionp. 427
10.5 The Interplay Between STC and Detection Performancep. 429
10.6 Numerical Resultsp. 431
10.7 Adaptive Implementationp. 437
10.8 Conclusionsp. 441
Acknowledgmentp. 442
Referencesp. 442
Indexp. 445