Cover image for Signal processing for communications
Title:
Signal processing for communications
Personal Author:
Series:
Communication and information sciences
Publication Information:
Boca Raton, FL : EFPL Press, 2008
Physical Description:
xv, 371 p. : ill. ; 25 cm.
ISBN:
9781420070460
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193066 TK5102.9 P73 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Taking a novel, less classical approach to the subject, the authors have written this book with the conviction that signal processing should be fun. Their treatment is less focused on the mathematics and more on the conceptual aspects, allowing students to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics and helping students solve real-world problems. The last chapter pulls together the individual topics into an in-depth look at the development of an end-to-end communication system. Richly illustrated with examples and exercises in each chapter, the book offers a fresh approach to the teaching of signal processing to upper-level undergraduates.


Table of Contents

Prefacep. vii
Chapter 1 What Is Digital Signal Processing?p. 1
1.1 Some History and Philosophyp. 2
1.1.1 Digital Signal Processing under the Pyramidsp. 2
1.1.2 The Hellenic Shift to Analog Processingp. 4
1.1.3 "Gentlemen: calculemus!"p. 5
1.2 Discrete Timep. 7
1.3 Discrete Amplitudep. 10
1.4 Communication Systemsp. 12
1.5 How to Read this Bookp. 17
Further Readingp. 18
Chapter 2 Discrete-Time Signalsp. 19
2.1 Basic Definitionsp. 19
2.1.1 The Discrete-Time Abstractionp. 21
2.1.2 Basic Signalsp. 23
2.1.3 Digital Frequencyp. 25
2.1.4 Elementary Operatorsp. 26
2.1.5 The Reproducing Formulap. 27
2.1.6 Energy and Powerp. 27
2.2 Classes of Discrete-Time Signalsp. 28
2.2.1 Finite-Length Signalsp. 29
2.2.2 Infinite-Length Signalsp. 30
Examplesp. 33
Further Readingp. 36
Exercisesp. 36
Chapter 3 Signals and Hilbert Spacesp. 37
3.1 Euclidean Geometry: a Reviewp. 38
3.2 From Vector Spaces to Hilbert Spacesp. 41
3.2.1 The Recipe for Hilbert Spacep. 42
3.2.2 Examples of Hilbert Spacesp. 45
3.2.3 Inner Products and Distancesp. 46
3.3 Subspaces, Bases, Projectionsp. 47
3.3.1 Definitionsp. 48
3.3.2 Properties of Orthonormal Basesp. 49
3.3.3 Examples of Basesp. 51
3.4 Signal Spaces Revisitedp. 53
3.4.1 Finite-Length Signalsp. 53
3.4.2 Periodic Signalsp. 53
3.4.3 Infinite Sequencesp. 54
Further Readingp. 55
Exercisesp. 55
Chapter 4 Fourier Analysisp. 59
4.1 Preliminariesp. 60
4.1.1 Complex Exponentialsp. 61
4.1.2 Complex Oscillations? Negative Frequencies?p. 61
4.2 The DFT (Discrete Fourier Transform)p. 63
4.2.1 Matrix Formp. 64
4.2.2 Explicit Formp. 64
4.2.3 Physical Interpretationp. 67
4.3 The DFS (Discrete Fourier Series)p. 71
4.4 The DTFT (Discrete-Time Fourier Transform)p. 72
4.4.1 The DTFT as the Limit of a DFSp. 75
4.4.2 The DTFT as a Formal Change of Basisp. 77
4.5 Relationships between Transformsp. 81
4.6 Fourier Transform Propertiesp. 83
4.6.1 DTFT Propertiesp. 83
4.6.2 DFS Propertiesp. 85
4.6.3 DFT Propertiesp. 86
4.7 Fourier Analysis in Practicep. 90
4.7.1 Plotting Spectral Datap. 91
4.7.2 Computing the Transform: the FFTp. 93
4.7.3 Cosmetics: Zero-Paddingp. 94
4.7.4 Spectral Analysisp. 95
4.8 Time-Frequency Analysisp. 98
4.8.1 The Spectrogramp. 98
4.8.2 The Uncertainty Principlep. 100
4.9 Digital Frequency vs. Real Frequencyp. 101
Examplesp. 102
Further Readingp. 105
Exercisesp. 106
Chapter 5 Discrete-Time Filtersp. 109
5.1 Linear Time-Invariant Systemsp. 109
5.2 Filtering in the Time Domainp. 111
5.2.1 The Convolution Operatorp. 111
5.2.2 Properties of the Impulse Responsep. 113
5.3 Filtering by Example - Time Domainp. 115
5.3.1 FIR Filteringp. 115
5.3.2 IIR Filteringp. 117
5.4 Filtering in the Frequency Domainp. 121
5.4.1 LTI "Eigenfunctions"p. 121
5.4.2 The Convolution and Modulation Theoremsp. 122
5.4.3 Properties of the Frequency Responsep. 123
5.5 Filtering by Example - Frequency Domainp. 126
5.6 Ideal Filtersp. 129
5.7 Realizable Filtersp. 133
5.7.1 Constant-Coefficient Difference Equationsp. 134
5.7.2 The Algorithmic Nature of CCDEsp. 135
5.7.3 Filter Analysis and Designp. 136
Examplesp. 136
Further Readingp. 143
Exercisesp. 143
Chapter 6 The Z-Transformp. 147
6.1 Filter Analysisp. 148
6.1.1 Solving CCDEsp. 148
6.1.2 Causalityp. 149
6.1.3 Region of Convergencep. 150
6.1.4 ROC and System Stabilityp. 152
6.1.5 ROC of Rational Transfer Functions and Filter Stabilityp. 152
6.2 The Pole-Zero Plotp. 152
6.2.1 Pole-Zero Patternsp. 153
6.2.2 Pole-Zero Cancellationp. 154
6.2.3 Sketching the Transfer Function from the Pole-Zero Plotp. 155
6.3 Filtering by Example - Z-Transformp. 156
Examplesp. 157
Further Readingp. 159
Exercisesp. 159
Chapter 7 Filter Designp. 165
7.1 Design Fundamentalsp. 165
7.1.1 FIR versus IIRp. 166
7.1.2 Filter Specifications and Tradeoffsp. 168
7.2 FIR Filter Designp. 171
7.2.1 FIR Filter Design by Windowingp. 171
7.2.2 Minimax FIR Filter Designp. 179
7.3 IIR Filter Designp. 190
7.3.1 All-Time Classicsp. 191
7.4 Filter Structuresp. 195
7.4.1 FIR Filter Structuresp. 196
7.4.2 IIR Filter Structuresp. 197
7.4.3 Some Remarks on Numerical Stabilityp. 200
7.5 Filtering and Signal Classesp. 200
7.5.1 Filtering of Finite-Length Signalsp. 200
7.5.2 Filtering of Periodic Sequencesp. 201
Examplesp. 204
Further Readingp. 208
Exercisesp. 208
Chapter 8 Stochastic Signal Processingp. 217
8.1 Random Variablesp. 217
8.2 Random Vectorsp. 219
8.3 Random Processesp. 221
8.4 Spectral Representation of Stationary Random Processesp. 223
8.4.1 Power Spectral Densityp. 224
8.4.2 PSD of a Stationary Processp. 225
8.4.3 White Noisep. 227
8.5 Stochastic Signal Processingp. 227
Examplesp. 229
Further Readingp. 232
Exercisesp. 233
Chapter 9 Interpolation and Samplingp. 235
9.1 Preliminaries and Notationp. 236
9.2 Continuous-Time Signalsp. 237
9.3 Bandlimited Signalsp. 239
9.4 Interpolationp. 240
9.4.1 Local Interpolationp. 241
9.4.2 Polynomial Interpolationp. 243
9.4.3 Sinc Interpolationp. 245
9.5 The Sampling Theoremp. 247
9.6 Aliasingp. 250
9.6.1 Non-Bandlimited Signalsp. 250
9.6.2 Aliasing: Intuitionp. 251
9.6.3 Aliasing: Proofp. 253
9.6.4 Aliasing: Examplesp. 255
9.7 Discrete-Time Processing of Analog Signalsp. 260
9.7.1 A Digital Differentiatorp. 260
9.7.2 Fractional Delaysp. 261
Examplesp. 262
Appendixp. 266
Further Readingp. 268
Exercisesp. 269
Chapter 10 A/D and D/A Conversionsp. 275
10.1 Quantizationp. 275
10.1.1 Uniform Scalar Quantizationp. 278
10.1.2 Advanced Quantizersp. 282
10.2 A/D Conversionp. 283
10.3 D/A Conversionp. 286
Examplesp. 287
Further Readingp. 290
Exercisesp. 290
Chapter 11 Multirate Signal Processingp. 293
11.1 Downsamplingp. 294
11.1.1 Properties of the Downsampling Operatorp. 294
11.1.2 Frequency-Domain Representationp. 295
11.1.3 Examplesp. 297
11.1.4 Downsampling and Filteringp. 302
11.2 Upsamplingp. 304
11.2.1 Upsampling and Interpolationp. 306
11.3 Rational Sampling Rate Changesp. 310
11.4 Oversamplingp. 311
11.4.1 Oversampled A/D Conversionp. 311
11.4.2 Oversampled D/A Conversionp. 314
Examplesp. 319
Further Readingp. 322
Exercisesp. 322
Chapter 12 Design of a Digital Communication Systemp. 327
12.1 The Communication Channelp. 328
12.1.1 The AM Radio Channelp. 329
12.1.2 The Telephone Channelp. 330
12.2 Modem Design: The Transmitterp. 331
12.2.1 Digital Modulation and the Bandwidth Constraintp. 331
12.2.2 Signaling Alphabets and the Power Constraintp. 339
12.3 Modem Design: the Receiverp. 347
12.3.1 Hilbert Demodulationp. 348
12.3.2 The Effects of the Channelp. 350
12.4 Adaptive Synchronizationp. 353
12.4.1 Carrier Recoveryp. 353
12.4.2 Timing Recoveryp. 356
Further Readingp. 365
Exercisesp. 365
Indexp. 367