Cover image for Porous silicon carbide and gallium nitride : epitaxy, catalysis, and biotechnology applications
Title:
Porous silicon carbide and gallium nitride : epitaxy, catalysis, and biotechnology applications
Personal Author:
Publication Information:
Haboken, NJ : Wiley, 2008
Physical Description:
xiv, 318 p. : ill. ; 24 cm.
ISBN:
9780470517529
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010177867 TK7871.15.S56 F44 2008 Open Access Book Book
Searching...
Searching...
30000010191452 TK7871.15.S56 F44 2008 Open Access Book Book
Searching...
Searching...
30000003501321 TK7871.15.S56 F44 2008 Open Access Book Book
Searching...
Searching...
30000003501362 TK7871.15.S56 F44 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Porous Silicon Carbide and Gallium Nitride: Epitaxy, Catalysis, and Biotechnology Applications presents the state-of-the-art in knowledge and applications of porous semiconductor materials having a wide band gap. This comprehensive reference begins with an overview of porous wide-band-gap technology, and describes the underlying scientific basis for each application area. Additional chapters cover preparation, characterization, and topography; processing porous SiC; medical applications; magnetic ion behavior, and many more


Author Notes

Randall M. Feenstra, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Colin E.C. Wood Electronics Division, US Office of Naval Research, Arlington, Virginia, USA


Table of Contents

Prefacep. xi
1 Porous SiC Preparation, Characterization and Morphologyp. 1
1.1 Introductionp. 1
1.2 Triangular Porous Morphology in n-type 4H-SiCp. 2
1.2.1 Crystal Anodizationp. 2
1.2.2 Description of the Porous Structurep. 3
1.2.3 Model of the Morphologyp. 9
1.3 Nano-columnar Pore Formation in 6H-SiCp. 15
1.3.1 Experimentalp. 15
1.3.2 Resultsp. 16
1.3.3 Discussionp. 18
1.4 Summaryp. 26
Acknowledgementsp. 27
Referencesp. 27
2 Processing Porous SiC: Diffusion, Oxidation, Contact Formationp. 31
2.1 Introductionp. 31
2.2 Formation of Porous Layerp. 32
2.3 Diffusion in Porous SiCp. 42
2.4 Oxidationp. 47
2.5 Contacts to Porous SiCp. 49
Acknowledgementsp. 53
Referencesp. 53
3 Growth of SiC on Porous SiC Buffer Layersp. 55
3.1 Introductionp. 55
3.2 SiC CVD Growthp. 57
3.3 Growth of 3C-SiC on Porous Si via Cold-Wall Epitaxyp. 58
3.3.1 Growth on Porous Si Substratesp. 58
3.3.2 Growth on Stabilized Porous Si Substratesp. 62
3.4 Growth of 3C-SiC on Porous 3C-SiCp. 64
3.4.1 Growth in LPCVD Cold-wall Reactorp. 64
3.5 Growth of 4H-SiC on Porous 4H-SiCp. 67
3.6 Conclusionp. 73
Acknowledgementsp. 74
Referencesp. 74
4 Preparation and Properties of Porous GaN Fabricated by Metal-Assisted Electroless Etchingp. 77
4.1 Introductionp. 77
4.2 Creation of Porous GaN by Electroless Etchingp. 78
4.3 Morphology Characterizationp. 80
4.3.1 Porous GaN Derived from Unintentionally Doped Filmsp. 80
4.3.2 Transmission Electron Microscopy (TEM) Characterizationp. 84
4.4 Luminescence of Porous GaNp. 85
4.4.1 Cathodoluminescence (CL) of Porous GaNp. 86
4.4.2 Photoluminescence (PL) of Porous GaNp. 88
4.5 Raman Spectroscopy of Porous GaNp. 89
4.5.1 Characteristics of Raman scattering in GaNp. 89
4.5.2 Raman Spectra of Porous GaN Excited Below Band Gapp. 91
4.6 Summary and Conclusionsp. 95
Acknowledgementsp. 95
Referencesp. 95
5 Growth of GaN on Porous SiC by Molecular Beam Epitaxyp. 101
5.1 Introductionp. 101
5.2 Morphology and Preparation of Porous SiC Substratesp. 104
5.2.1 Porous Substratesp. 104
5.2.2 Hydrogen Etchingp. 105
5.3 MBE Growth of GaN on Porous SiC Substratesp. 108
5.3.1 Experimental Detailsp. 108
5.3.2 Film Structurep. 110
5.3.3 Film Strainp. 114
5.4 Summaryp. 116
Acknowledgementsp. 117
Referencesp. 117
6 GaN Lateral Epitaxy Growth Using Porous SiN[subscript x], TiN[subscript x] and SiCp. 121
6.1 Introductionp. 121
6.2 Epitaxy of GaN on Porous SiN[subscript x] Networkp. 122
6.2.1 Three-step Growth Methodp. 123
6.2.2 Structural and Optical Characterizationp. 128
6.2.3 Schottky Diodes (SDs) on Undoped GaN Templatesp. 135
6.2.4 Deep Level Transition Spectrump. 138
6.3 Epitaxial Lateral Overgrowth of GaN on Porous TiNp. 140
6.3.1 Formation of Porous TiNp. 140
6.3.2 Growth of GaN on Porous TiNp. 142
6.3.3 Characterization by XRDp. 146
6.3.4 Characterization by TEMp. 146
6.3.5 Characterization by PLp. 152
6.4 Growth of GaN on Porous SiCp. 154
6.4.1 Fabrication of Porous SiCp. 156
6.4.2 GaN Growth on Hydrogen Polished Porous SiCp. 157
6.4.3 GaN Growth on Chemical Mechanical Polished Porous SiCp. 164
Acknowledgementsp. 167
Referencesp. 167
7 HVPE Growth of GaN on Porous SiC Substratesp. 171
7.1 Introductionp. 171
7.2 PSC Substrate Fabrication and Propertiesp. 172
7.2.1 Formation of Various Types of SPSC Structurep. 173
7.2.2 Dense Layerp. 177
7.2.3 Monitoring of Anodization Processp. 178
7.2.4 Vacancy Model of Primary Pore Formationp. 183
7.2.5 Stability of SPSC Under Post-Anodization Treatmentp. 190
7.3 Epitaxial Growth of GaN Films on PSC Substratesp. 195
7.3.1 The Growth and Its Effect on the Structure of the PSC Substratep. 195
7.3.2 Properties of the GaN Films Grownp. 198
7.4 Summaryp. 206
Referencesp. 207
8 Dislocation Mechanisms in GaN Films Grown on Porous Substrates or Interlayersp. 213
8.1 Introductionp. 213
8.2 Extended Defects in Epitaxially Grown GaN Thin Layersp. 214
8.3 Dislocation Mechanisms in Conventional Lateral Epitaxy Overgrowth of GaNp. 217
8.4 Growth of GaN on Porous SiC Substratesp. 220
8.5 Growth of GaN on Porous SiN and TiN Interlayersp. 222
8.5.1 GaN Growth on a TiN Interlayerp. 223
8.5.2 GaN Growth on a SiN Interlayerp. 224
8.6 Summaryp. 226
Acknowledgementsp. 227
Referencesp. 227
9 Electrical Properties of Porous SiCp. 231
9.1 Introductionp. 231
9.2 Resistivity and Hall Effectp. 232
9.3 Deep Level Transient Spectroscopyp. 234
9.3.1 Fundamentals of DLTSp. 234
9.3.2 Method of Solving the General Equationp. 236
9.4 Sample Considerationsp. 237
9.5 Potential Energy Near a Porep. 238
9.6 DLTS Data and Analysisp. 240
Acknowledgementsp. 243
Referencesp. 243
10 Magnetism of Doped GaN Nanostructuresp. 245
10.1 Introductionp. 245
10.2 Mn-Doped GaN Crystalp. 247
10.3 Mn-Doped GaN Thin Filmsp. 248
10.3.1 Mn-Doped GaN (1120) Surfacep. 249
10.3.2 Mn-Doped GaN (1010) Surfacep. 252
10.3.3 Mn and C Codoped in GaN (1010) Surfacep. 257
10.4 Mn- and Cr-Doped GaN One-Dimensional Structuresp. 259
10.4.1 Mn-Doped GaN Nanowiresp. 259
10.4.2 Cr-Doped GaN Nanotubesp. 262
10.4.3 Cr-Doped GaN Nanohole Arraysp. 265
10.5 N-Doped Mn and Cr Clustersp. 268
10.5.1 Giant Magnetic Moments of Mn[subscript x]N Clustersp. 268
10.5.2 N-induced Magnetic Transition in Small Cr[subscript x]N Clustersp. 269
10.6 Summaryp. 270
Acknowledgementsp. 271
Referencesp. 271
11 SiC Catalysis Technologyp. 275
11.1 Introductionp. 275
11.2 Silicon Carbide Supportp. 276
11.3 Heat Effects During Reactionp. 277
11.4 Reactions on SiC as Catalytic Supportsp. 278
11.5 Examples of SiC Catalyst Applicationsp. 279
11.5.1 Pt/[beta]-SiC Catalyst for Catalytic Combustion of Carbon Particles in Diesel Enginesp. 279
11.5.2 Complete Oxidation of Methanep. 280
11.5.3 SiC-Supported MoO[subscript 3]-Carbon-Modified Catalyst for the n-Heptane Isomerizationp. 280
11.5.4 Selective Oxidation of H[subscript 2]S Over SiC-Supported Iron Catalysts into Elemental Sulfurp. 281
11.5.5 Partial Oxidation of n-Butane to Maleic Anhydride Using SiC-Mixed and Pd-Modified Vanadyl Pyrophosphate (VPO) Catalysts (Case study)p. 282
11.6 Prospects and Conclusionsp. 288
Referencesp. 289
12 Nanoporous SiC as a Semi-Permeable Biomembrane for Medical Use: Practical and Theoretical Considerationsp. 291
12.1 The Rationale for Implantable Semi-Permeable Materialsp. 291
12.2 The Biology of Soluble Signaling Proteins in Tissuep. 292
12.3 Measuring Cytokine Secretion In Living Tissues and Organsp. 294
12.4 Creating a Biocompatible Tissue - Device Interface: Advantages of SiCp. 295
12.5 The Testing of SiC Membranes for Permeability of Proteinsp. 296
12.6 Improving the Structure of SiC Membranes for Biosensor Interfacesp. 299
12.7 Theoretical Considerations: Modeling Diffusion through a Porous Membranep. 301
12.7.1 Effective Medium Models for a Porous Membranep. 302
12.7.2 Comparison with Experimentp. 304
12.8 Future Development: Marriage of Membrane and Microchipp. 305
12.9 Conclusionsp. 307
Acknowledgementsp. 307
Referencesp. 308
Indexp. 311