Cover image for Node list tolerance analysis enhacing SPICE capabilities with mathcad
Title:
Node list tolerance analysis enhacing SPICE capabilities with mathcad
Personal Author:
Publication Information:
Boca Raton, FL : CRC/Taylor & Francis, 2006
Physical Description:
1 CD-ROM ; 12 cm.
ISBN:
9780849370281
General Note:
Accompanies text of the same title : TK454 B69 2006

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010114113 CP 4936 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive.

Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits.

Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.


Table of Contents

Part I Nominal Analysis
Chapter 1 Introductionp. 3
1.1 Nominal Analysisp. 3
1.1.1 Introductionp. 3
1.1.2 The NDS Method of Nominal Circuit Analysisp. 4
1.1.3 General Guidelinesp. 5
1.2 Introduction to Node List Circuit Analysisp. 6
1.2.1 Rules and Definitionsp. 6
Chapter 2 Passive Circuitsp. 9
2.1 Introduction to Node List Circuit Analysis (Part One)p. 9
2.2 Introduction to Node List Circuit Analysis (Part Two)p. 16
2.3 All-Capacitive Circuitp. 21
2.4 All-Inductive Circuitp. 23
2.5 Twin-T RC Networkp. 24
2.6 Broadband Pulse Transformer Modelp. 27
2.7 All-Capacitive Loops (ACL)p. 30
2.8 All-Inductive Cutsets (ICS)p. 31
2.9 All-Capacitive Loop Examplep. 32
Referencesp. 34
Chapter 3 Controlled Sourcesp. 35
3.1 Controlled (Dependent) Sourcesp. 35
3.1.1 Voltage-Controlled Current Source (VCCS)p. 35
3.1.2 Current-Controlled Current Source (CCCS)p. 35
3.1.3 Voltage-Controlled Voltage Source (VCVS)p. 35
3.1.4 Current-Controlled Voltage Source (CCVS)p. 36
3.1.5 CCVS to VCVSp. 36
3.1.6 CCCS to VCCSp. 36
3.1.7 Four Rules that Must be Observedp. 37
3.2 Floating VCVSp. 38
3.3 Circuits with M > 1p. 41
3.4 First-Order MOSFET Modelp. 44
3.5 VCVS and CCCS Examplep. 46
3.6 Two Inputs, Three Outputsp. 50
3.7 Third-Order Opamp Modelp. 54
3.8 A Subcircuit Schemep. 56
3.9 Subcircuit Opamp Modelp. 58
3.10 Fifth-Order Active Filterp. 59
3.11 State Variable Filterp. 60
3.12 Seventh-Order Elliptical Low-Pass Filterp. 63
3.12.1 Stepping One Resistor Valuep. 68
3.12.2 Stepping All Seven Capacitor Valuesp. 71
3.13 Square Root of Frequency (+10 dB/decade) Circuitp. 74
3.14 HV (200 V) Shunt MOSFET Regulatorp. 76
3.15 LTC 1562 Band-Pass Filter IC in a Quad ICp. 78
3.16 LTC 1562 Quad Band Filter ICp. 79
3.17 BJT Constant Current Source - A Simple Linear Model Using the NDS Methodp. 87
3.18 uA733 Video Amplifierp. 89
Referencesp. 95
Chapter 4 Leverrier's Algorithmp. 97
4.1 Numerical Transfer Function [1]p. 97
4.2 Transfer Function Using Leverrier's Algorithm for Twin-T RC Networkp. 100
Referencesp. 101
Chapter 5 Stability Analysisp. 103
5.1 Unity Gain Differential Amplifiersp. 103
5.2 Stability of LM158 Opamp Modelp. 106
5.3 High-Voltage Shunt Regulator - Stability Analysisp. 109
Chapter 6 Transient Analysisp. 115
6.1 Introductionp. 115
6.2 Switched Transient Analysisp. 118
6.3 N = 2 Switched Circuit Transient Responsep. 120
6.4 Comparator 100-Hz Oscillatorp. 123
6.5 Transient Analysis of Pulse Transformerp. 127
6.6 Passive RCL Circuit Transient Analysisp. 131
6.7 Mathcad's Differential Equation Solversp. 133
6.8 A Mathematical Pulse Width Modulator (PWM)p. 135
6.9 Switching Power Supply Output Stage - Buck Regulatorp. 137
6.10 State Space Averagingp. 140
6.11 Simple Triangular Waveform Generatorp. 143
6.12 Quadrature Oscillatorp. 145
6.13 Wein Bridge Oscillatorp. 148
Referencesp. 149
Chapter 7 DC Circuit Analysisp. 151
7.1 Resistance Temperature Detector (RTD) Circuitp. 151
7.2 An Undergraduate EE Textbook Problemp. 152
7.2.1 Matrix Solution To Demonstrate the Utility of the NDS Methodp. 153
7.3 DC Test Circuitp. 154
7.4 Stacking VCVS's and Paralleling VCCS'sp. 158
7.5 DC Voltage Sweep (RTD Circuit)p. 159
7.6 RTD Circuit - Step Resistor Valuep. 161
7.7 Floating 5-V Input Sourcep. 164
Chapter 8 Three-Phase Circuitsp. 167
8.1 Convert [Delta] Floating Voltage Inputs to Single-Ended Y Inputsp. 167
8.2 Three-Phase NDS Solutionp. 170
8.2.1 Unbalanced Delta Load - Single-Ended Inputs on A and Bp. 170
8.2.2 Unbalanced Delta Load - Single-Ended Inputs on A and Cp. 172
8.3 Three-Phase Y - Unbalanced Loadp. 174
8.4 Three-Phase Y-Connected Unbalanced Load - Floating Delta Inputp. 177
8.5 Balanced Y- Loadp. 181
Referencesp. 186
Appendix Ip. 187
Background Theory of NDS Methodp. 187
A-I.1 Theory of NDS Methodp. 196
A-I.1.1 An AC Floating VCVSp. 199
A-I.1.2 VCVS and CCCSp. 203
Part II Tolerance Analysis
Chapter 9 Introductionp. 211
9.1 Introductionp. 211
9.1.1 Tolerance Analysis of Circuits with Discrete Componentsp. 211
9.1.2 Analysis Methodsp. 212
9.2 Some Facts about Tolerance Analysisp. 212
9.2.1 DC Analysisp. 212
9.2.1.1 Monte Carlo Analysisp. 213
9.2.2 AC Analysisp. 213
9.2.3 Transient Analysisp. 217
9.2.4 Asymmetric Tolerancesp. 217
Referencesp. 217
Chapter 10 DC Circuitsp. 219
10.1 Resistance Temperature Detector (RTD) Circuitp. 219
10.2 A Note on Asymmetric Tolerancesp. 221
10.3 Centered Difference Approximation - Sensitivitiesp. 222
10.4 RTD Circuit Monte Carlo Analysis (MCA)p. 224
10.5 RTD MCA with R4 Tolerance = 10%p. 226
10.6 RTD Circuit Fast Monte Carlo Analysis (FMCA)p. 227
10.7 A CASE FMCA Greater than EVAp. 228
10.8 Tolerancing Inputsp. 231
10.9 Beta Distributions [4-6]p. 232
10.10 RTD MCA - Beta (Skewed) Distributionp. 234
10.11 MCA of RTD Circuit using Bimodal (Gapped) Distribution Inputsp. 236
Referencesp. 239
Chapter 11 AC Circuitsp. 241
11.1 Circuit Output vs. Component Valuep. 241
11.2 Exact Values of C1 Sensitivityp. 247
11.3 Multiple-Output EVAp. 248
11.4 Butterworth Low-Pass Filter Circuitp. 250
11.5 Butterworth Low-Pass Filter MCAp. 251
11.6 Butterworth Low-Pass Filter EVAp. 253
11.7 Butterworth Low-Pass Filter FMCAp. 254
11.8 Multiple-Feedback Band-Pass Filter (BPF) Circuitp. 255
11.9 Multiple-Feedback BPF MCAp. 256
11.10 Multiple-Feedback BPF EVAp. 257
11.11 Multiple-Feedback BPF FMCAp. 259
11.12 Switching Power Supply Compensation Circuitp. 260
11.13 Switching Power Supply Compensation MCAp. 261
11.14 Switching Power Supply Compensation EVAp. 262
11.15 Switching Power Supply Compensation FMCAp. 264
11.16 Sallen and Key Band-Pass Filter (BPF) Circuitp. 265
11.17 Sallen and Key BPF MCAp. 266
11.17.1 Sallen and Key BPF - MCA with both Common and Precision Tolerancesp. 267
11.18 Sallen and Key BPF EVAp. 268
11.19 Sallen and Key BPF FMCAp. 270
11.20 State Variable Filter Circuitp. 271
11.21 State Variable Filter MCAp. 272
11.22 State Variable Filter EVAp. 273
11.23 State Variable Filter FMCA and MCA Combinedp. 275
11.24 High-Q Hum Notch Filter Circuitp. 276
11.25 High-Q Hum Notch Filter MCAp. 278
11.26 High-Q Hum Notch Filter EVAp. 279
11.27 High-Q Hum Notch Filter FMCAp. 280
11.28 LTC 1562 MCAp. 281
11.29 LTC 1562 EVAp. 282
Referencesp. 284
Chapter 12 Transient Tolerance Analysisp. 285
12.1 Transient MCA - Twin-T RC Networkp. 285
12.2 Transient MCA - Multiple Feedback BPFp. 286
12.3 AC and Transient MCA - Bessel HPFp. 288
12.4 Transient MCA - State Variable Filterp. 291
Chapter 13 Three-Phase Circuitsp. 295
13.1 Three-Phase Y-Connected Unbalanced Load MCAp. 295
13.2 Three-Phase Y-Connected Unbalanced Load EVAp. 297
13.3 Three-Phase Y-Connected Unbalanced Load FMCAp. 300
Chapter 14 Miscellaneous Topicsp. 303
14.1 Components Nominally Zerop. 303
14.2 Tolerance Analysis of Opamp Offsetsp. 305
14.3 Best-Fit Resistor Ratiosp. 309
14.4 Truncated Gaussian Distributionp. 311
14.5 LTC1060 Switched Capacitor Filterp. 313
14.5.1 Design Procedure from the Data Sheetp. 313
Appendix IIp. 319
Summary of Tolerance Analysis Methodsp. 319
DCp. 319
ACp. 319
Transientp. 319
Table of Subprogramsp. 320
Part I Nominal Analysis Subprogramsp. 320
Part II Tolerance Analysis Subprograms (Used with Part I Subprograms)p. 320
In Case of Difficultyp. 320
Abbreviationsp. 321
Indexp. 323