Cover image for Synthetic biology : industrial and environmental applications
Title:
Synthetic biology : industrial and environmental applications
Publication Information:
Weinheim, Germany : Wiley-Blackwell, ©2012
Physical Description:
xxvi, 240 p. : ill. (some col.) ; 25 cm.
ISBN:
9783527331833
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010306157 TA164 S964 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

This is the only book to focus on industrial and environmental applications of synthetic biology, covering 17 of the most promising uses in the areas of biofuel, bioremediation and biomaterials. The contributions are written by experts from academia, non-profit organizations and industry, outlining not only the scientific basics but also the economic, environmental and ethical impact of the new technologies.
This makes it not only suitable as supplementary material for students but also the perfect companion for policy makers and funding agencies, if they are to make informed decisions about synthetic biology.
Largely coordinated by Markus Schmidt, a policy adviser, and the only European to testify in front of the bioethics commission of the Obama administration.


Author Notes

Markus Schmidt has an interdisciplinary background with an education in electronic and biomedical engineering, biology (MSc) and risk research (PhD). His research interests include risk assessment, the science-society interface, and technology assessment (TA) of novel bio-, nano- and converging technologies. Since 2005 he pioneered synthetic biology safety and ELSI (ethical, legal and social issues) research in Europe. See: www.markusschmidt.eu for details.


Table of Contents

Markus SchmidtMarkus SchmidtMarkus Schmidt and Manuel Porcar and Vincent Schachter and Antoine Danchin and Ismail MahmutogluIsmail Mahmutoglu and Lei Pei and Manuel Porcar and Rachel Armstrong and Mark BedauLei Pei and Rachel Armstrong and Antoine Danchin and Manuel PorcarRachel Armstrong and Markus Schmidt and Mark BedauLei Pei and Shlomiya Bar-Yam and Jennifer Byers-Corbin and Rocco Casagrande and Florentine Eichler and Allen Lin and Martin Österreicher and Pernilla C. Regardh and Ralph D. Turlington and Kenneth A. Oye and Helge Torgersen and Zheng-Jun Cuan and Wei Wei and Markus Schmidt
List of Contributorsp. xi
Short CVs of Contributorsp. xiii
Prefacep. xvii
Acknowledgmentsp. xix
Executive Summaryp. xxi
Biofuelsp. xxi
Bioremediationp. xxii
Biomaterialsp. xxiv
Novel Developments in Synthetic Biologyp. xxv
Introductionp. 7
What Are Synthetic Biology Applications?p. 1
Which Synthetic Biology Applications Did We Consider?p. 2
Selecting and Assessing Synthetic Biology Applicationsp. 3
The Regulatory Context for Synthetic Biologyp. 4
Referencesp. 6
1 Biofuelsp. 7
1.1 Biofuels in Generalp. 7
1.1.1 Introductionp. 7
1.1.2 Economic Potentialp. 8
1.1.3 Environmental Impactp. 13
1.1.3.1 Land Requirements for Projected Biofuel Usep. 14
1.1.3.2 Other Environmental Concernsp. 16
1.1.3.3 Impact of Legislative Decicionsp. 16
1.1.4 Foreseeable Social and Ethical Aspectsp. 17
1.1.4.1 How Could the New SB Application Impact Society at Large?p. 18
1.2 Ethanolp. 19
1.2.1 Introductionp. 19
1.2.2 Economic Potentialp. 20
1.2.3 Environmental Impactp. 21
1.2.4 Foreseeable Social and Ethical Aspectsp. 24
1.2.4.1 Could the Application Change Social Interactions?p. 26
1.2.4.2 Producing Countries, Rich Countries?p. 26
1.3 Non-ethanol Fuelsp. 27
1.3.1 Introductionp. 27
1.3.2 Economic Potentialp. 31
1.3.3 Environmental Impactp. 32
1.3.4 Foreseeable Social and Ethical Aspectsp. 33
1.3.4.1 Impact on Social Interactionp. 34
1.4 Algae-based Fuelsp. 35
1.4.1 Introductionp. 35
1.4.2 Economic Potentialp. 37
1.4.3 Environmental Impactp. 41
1.4.4 Foreseeable Social and Ethical Aspectsp. 42
1.4.4.1 Could the Application Change Social Interactions?p. 42
1.5 Hydrogen Productionp. 43
1.5.1 Introductionp. 43
1.5.2 Economic Potentialp. 46
1.5.2.1 Cost Comparison with Gasoline for Transport Fuelsp. 46
1.5.3 Environmental Impactp. 49
1.5.3.1 Environmental Concernsp. 51
1.5.4 Foreseeable Social and Ethical Aspectsp. 51
1.5.4.1 Could the Application Change Social Interactions? If Yes, in Which Way?p. 52
1.6 Microbial Fuel Cells and Bio-photovoltaicsp. 52
1.6.1 Introductionp. 52
1.6.2 Economic Potentialp. 56
1.6.3 Environmental Impactp. 56
1.6.4 Foreseeable Social and Ethical Aspectsp. 59
1.7 Recommendations for Biofaelsp. 59
Referencesp. 61
2 Bioremediationp. 67
2.1 Bioremediation in Generalp. 67
2.1.1 Introductionp. 67
2.1.2 Economic Potentialp. 68
2.1.3 Environmental Impactp. 69
2.1.4 Foreseeable Social and Ethical Aspectsp. 70
2.2 Detection of Environmental Pollutants (Biosensors)p. 70
2.2.1 Introductionp. 70
2.2.2 Economic Potentialp. 73
2.2.3 Environmental Impactp. 74
2.2.4 Foreseeable Social and Ethical Aspectsp. 76
2.3 Water Treatmentp. 77
2.3.1 Introductionp. 77
2.3.2 Economic Potentialp. 78
2.3.3 Environmental Impactp. 78
2.3.4 Foreseeable Social and Ethical Aspectsp. 79
2.4 Water Desalination with Biomembranesp. 79
2.4.1 Introductionp. 79
2.4.2 Economic Potentialp. 80
2.4.3 Environmental Impactp. 81
2.4.4 Foreseeable Social and Ethical Aspectsp. 81
2.5 Soil and Groundwater Decontaminationp. 82
2.5.1 Introductionp. 82
2.5.2 Economic Potentialp. 83
2.5.3 Environmental Impactp. 84
2.5.4 Foreseeable Social and Ethical Aspectsp. 85
2.6 Solid Waste Treatmentp. 85
2.6.1 Introductionp. 85
2.6.2 Economic Potentialp. 87
2.6.3 Environmental Impactp. 87
2.6.4 Foreseeable Social and Ethical Aspectsp. 87
2.7 CO 2 Recapturingp. 89
2.7.1 Introductionp. 89
2.7.2 Economic Potentialp. 92
2.7.2.1 How Is Carbon Traded?p. 93
2.7.3 Environmental Impactp. 95
2.7 A Foreseeable Social and Ethical Aspectsp. 96
2.8 Recommendations for Bioremediationp. 98
Referencesp. 99
Further Readingp. 101
3 Biomaterialsp. 103
3.1 Biomaterials in Generalp. 103
3.1.1 Introductionp. 103
3.1.2 Economic Potentialp. 104
3.1.3 Environmental Impactp. 106
3.1.4 Foreseeable Social and Ethical Aspectsp. 107
3.2 Biopolymers/Plasticsp. 108
3.2.1 Introductionp. 108
3.2.2 Economic Potentialp. 111
3.2.3 Environmental Impactp. 113
3.2.4 Foreseeable Social and Ethical Aspectsp. 115
3.3 Bulk Chemical Productionp. 117
3.3.1 Introductionp. 117
3.3.2 Economic Potentialp. 120
3.3.3 Environmental Impactp. 123
3.3.4 Foreseeable Social and Ethical Aspectsp. 124
3.4 Fine Chemical Productionp. 126
3.4.1 Introductionp. 126
3.4.1.1 Vitamins and Pharmaceuticalsp. 128
3.4.2 Economic Potentialp. 129
3.4.3 Environmental Impactp. 131
3.4.4 Foreseeable Social and Ethical Aspectsp. 133
3.5 Cellulosomesp. 134
3.5.1 Introductionp. 134
3.5.2 Economic Potentialp. 136
3.5.3 Environmental Impactp. 137
3.5.4 Foreseeable Social and Ethical Aspectsp. 138
3.6 Recommendations for Biomaterialsp. 139
Referencesp. 140
Further Readingp. 143
4 Other Developments in Synthetic Biologyp. 145
4.1 Protocellsp. 145
4.1.1 Introductionp. 145
4.1.2 Economic Potentialp. 147
4.1.3 Environmental Impactp. 147
4.1.4 Foreseeable Social and Ethical Aspectsp. 149
4.2 Xenobiologyp. 150
4.2.1 Introductionp. 150
4.2.2 Economic Potentialp. 152
4.2.3 Environmental Impactp. 152
4.2.4 Foreseeable Social and Ethical Aspectp. 154
4.3 Recommendations for Protocells and Xenobiologyp. 154
Referencesp. 155
Further Readingp. 156
5 Regulatory Frameworks for Synthetic Biologyp. 157
5.1 United States of Americap. 157
5.1.1 Introductionp. 157
5.1.2 United States Federal Regulations and Guidelinesp. 158
5.1.2.1 National Institutes of Health: Guidelines for Research Involving Recombinant DNA Moleculesp. 158
5.1.2.2 Environmental Protection Agency, US Department of Agriculture and Food and Drug Administrationp. 164
5.1.2.3 USDA Animal and Plant Heath Inspection Servicep. 167
5.1.2.4 Food and Drug Administrationp. 169
5.1.2.5 Department of Commerce Regulationsp. 170
5.1.2.6 Select Agent Rulesp. 172
5.1.2.7 Screening Guidance for Providers of Synthetic Double-Stranded DNAp. 175
5.1.3 International Conventions and Agreementsp. 176
5.1.3.1 The Convention on Biological Diversityp. 176
5.1.3.2 The Cartagena Protocol on Biosafery and the Nagoya-Kuala Lumpar Supplementary Protocol on Liabilityp. 177
5.1.3.3 The Biological Weapons Conventionp. 178
5.1.3.4 The Australia Group Guidelinesp. 179
5.1.4 Conclusions: Current Coverage and Future Considerationsp. 181
5.1.4.1 Current Coveragep. 181
5.1.4.2 Future Prospectsp. 183
5.2 Europep. 185
5.2.1 Introductionp. 185
5.2.1.1 Synthetic Biology as a Novel Science and Engineering Fieldp. 186
5.2.1.2 Synthetic Biology versus Genetic Engineeringp. 189
5.2.2 Existing Regulationsp. 190
5.2.2.1 European Unionp. 190
5.2.2.2 Examples of National Regulationsp. 195
5.2.2.3 Austriap. 196
5.2.2.4 Germanyp. 198
5.2.2.5 United Kingdomp. 201
5.2.2.6 Switzerlandp. 203
5.2.3 Options for Adapting and Improving Regulationsp. 205
5.2.4 Outlookp. 209
5.3 Chinap. 210
5.3.1 Introductionp. 210
5.3.2 General Provisionsp. 211
5.3.3 Biosecurity and Dual Usep. 217
5.3.4 Options for Adapting and Improving Regulationsp. 218
5.3.5 Outlookp. 219
Referencesp. 220
Further Readingp. 226
Annex A List of Biofuel Companiesp. 227
Annex B List of Bioremediation Companiesp. 229
Indexp. 237