Cover image for Modeling and analysis of dynamic systems
Title:
Modeling and analysis of dynamic systems
Edition:
Second edition
Publication Information:
Boca Raton : CRC Press, Taylor & Francis, 2014
Physical Description:
xvii, 548 pages : illustrations ; 27 cm.
ISBN:
9781466574939
Abstract:
"The goal of this second edition is essentially the same as that of the first edition, to provide the reader with a thorough knowledge of mathematical modeling and analysis of dynamic systems. Matlab, Simulink, and Simscape are introduced at the outset and are utilized throughout the book to perform symbolic, graphical, numerical, and simulation tasks. The textbook written at junior level, meticulously covers techniques for modeling dynamic systems, methods of response analysis, and in introduction to vibration and control systems. "--provided by publisher
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010337038 TA342 E88 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

Modeling and Analysis of Dynamic Systems, Second Editionintroduces MATLAB®, Simulink®, and Simscape(tm) and then uses them throughout the text to perform symbolic, graphical, numerical, and simulation tasks. Written for junior or senior level courses, the textbook meticulously covers techniques for modeling dynamic systems, methods of response analysis, and provides an introduction to vibration and control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems.

See What's New in the Second Edition:

Coverage of modeling and analysis of dynamic systems ranging from mechanical to thermal using Simscape Utilization of Simulink for linearization as well as simulation of nonlinear dynamic systems Integration of Simscape into Simulink for control system analysis and design

Each topic covered includes at least one example, giving students better comprehension of the subject matter. More complex topics are accompanied by multiple, painstakingly worked-out examples. Each section of each chapter is followed by several exercises so that students can immediately apply the ideas just learned. End-of-chapter review exercises help in learning how a combination of different ideas can be used to analyze a problem.

This second edition of a bestselling textbook fully integrates the MATLAB Simscape Toolbox and covers the usage of Simulink for new purposes. It gives students better insight into the involvement of actual physical components rather than their mathematical representations.


Table of Contents

Prefacep. xiii
Acknowledgmentp. xv
Authorsp. xvii
Chapter 1 Introduction to MATLAB®, Simulink®, and Simscape®p. 1
1.1 MATLAB Command Window and Command Promptp. 1
1.2 User-Defined Functions and Script Filesp. 2
1.2.1 Creating a Script Filep. 3
1.3 Defining and Evaluating Functionsp. 3
1.4 Iterative Calculationsp. 4
1.5 Matrices and Vectorsp. 5
1.6 Differentiation and Integrationp. 6
1.7 Plotting in MATLABp. 8
1.7.1 Plotting Data Pointsp. 8
1.7.2 Plotting Analytical Expressionsp. 9
1.8 Simulinkp. 10
1.8.1 Block Libraryp. 10
1.8.2 Building a New Modelp. 12
1.8.3 Simulationp. 13
1.9 Simscapep. 14
1.9.1 Block Libraryp. 15
1.9.2 Building a New Model and Simulationp. 15
1.9.3 Simulationp. 18
Chapter 2 Complex Analysis, Differential Equations, and Laplace Transformationp. 23
2.1 Complex Analysisp. 23
2.1.1 Complex Numbers in Rectangular Formp. 23
2.1.1.1 Magnitudep. 24
2.1.1.2 Complex Conjugatep. 25
2.1.2 Complex Numbers in Polar Formp. 26
2.1.2.1 Complex Algebra Using the Polar Formp. 28
2.1.2.2 Integer Powers of Complex Numbersp. 30
2.1.2.3 Roots of Complex Numbersp. 30
2.1.3 Complex Variables and Functionsp. 31
2.2 Differential Equationsp. 32
2.2.1 Linear, First-Order Differential Equationsp. 32
2.2.2 Second-Order Differential Equations with Constant Coefficientsp. 33
2.2.2.1 Homogeneous Solutionp. 33
2.2.2.2 Particular Solutionp. 34
2.3 Laplace Transformationp. 37
2.3.1 Linearity of Laplace and Inverse Laplace Transformsp. 40
2.3.2 Differentiation and Integration of Laplace Transformsp. 40
2.3.2.1 Differentiation of Laplace Transformsp. 40
2.3.2.2 Integration of Laplace Transformsp. 41
2.3.3 Special Functionsp. 42
2.3.3.1 Unit-Step Functionp. 42
2.3.3.2 Unit-Ramp Functionp. 44
2.3.3.3 Unit-Pulse Functionp. 44
2.3.3.4 Unit-Impulse (Dirac Delta) Functionp. 45
2.3.3.5 The Relation between Unit-Impulse and Unit-Step Functionsp. 46
2.3.3.6 Periodic Functionsp. 46
2.3.4 Laplace Transforms of Derivatives and Integralsp. 47
2.3.4.1 Laplace Transforms of Derivativesp. 47
2.3.4.2 Laplace Transforms of Integralsp. 48
2.3.5 Inverse Laplace Transformationp. 48
2.3.5.1 Partial-Fraction Expansion Methodp. 49
2.3.5.2 $$$ Performing Partial Fractions in MATLABp. 51
2.3.5.3 Convolution Methodp. 53
2.3.6 Final-Value Theorem and Initial-Value Theoremp. 55
2.3.6.1 Final-Value Theoremp. 55
2.3.6.2 Initial-Value Theoremp. 57
2.4 Summaryp. 60
Chapter 3 Matrix Analysisp. 65
3.1 Vectors and Matricesp. 65
3.1.1 Special Matricesp. 67
3.1.2 Elementary Row Operationsp. 67
3.1.3 Rank of a Matrixp. 68
3.1.4 Determinant of a Matrixp. 69
3.1.4.1 Properties of Determinantp. 70
3.1.4.2 Rank in Terms of Determinantp. 70
3.1.4.3 Block Diagonal and Block Triangular Matricesp. 71
3.1.5 Inverse of a Matrixp. 72
3.1.5.1 Adjoint Matrixp. 72
3.2   Solution of Linear Systems of Equationsp. 77
3.2.1 Gauss Elimination Methodp. 78
3.2.2 Using the Inverse of the Coefficient Matrixp. 79
3.2.3 Cramer's Rulep. 79
3.2.4 Homogeneous Systemsp. 81
3.3 Matrix Eigenvalue Problemp. 83
3.3.1 Solving the Eigenvalue Problemp. 83
3.3.2 Algebraic Multiplicity and Geometric Multiplicityp. 86
3.3.2.1 Generalized Eigenvectorsp. 86
3.3.2.2 Similarity Transformationsp. 87
3.3.2.3 Matrix Diagonalizationp. 88
3.3.2.4 Defective Matricesp. 88
3.4 Summaryp. 90
Chapter 4 System Model Representationp. 95
4.1 Configuration Formp. 95
4.1.1 Second-Order Matrix Formp. 96
4.2 State-Space Formp. 98
4.2.1 State Variables, State-Variable Equations, State Equationp. 98
4.2.1.1 State-Variable Equationsp. 99
4.2.1.2 State Equationp. 100
4.2.2 Output Equation, State-Space Formp. 101
4.2.2.1 Output Equationp. 102
4.2.2.2 State-Space Formp. 103
4.2.3 Decoupling the State Equationp. 105
4.3 Input-Output Equation, Transfer Functionp. 108
4.3.1 Input-Output Equations from the System Modelp. 108
4.3.2 Transfer Functions from the System Modelp. 110
4.4 Relations between State-Space Form, Input-Output Equation and Transfer Matrixp. 114
4.4.1 Input-Output Equation to State-Space Formp. 114
4.4.1.1 Controller Canonical Form $$$p. 116
4.4.2 State-Space Form to Transfer Matrixp. 118
4.5 Block Diagram Representationp. 123
4.5.1 Block Diagram Operationsp. 123
4.5.1.1 Summing Junctionp. 123
4.5.1.2 Series Combinations of Blocksp. 123
4.5.1.3 Parallel Combinations of Blocksp. 124
4.5.1.4 Integrationp. 126
4.5.1.5 Closed-Loop Systemsp. 126
4.5.2 Block Diagram Reduction Techniquesp. 128
4.5.2.1 Moving a Branch Pointp. 128
4.5.2.2 Moving a Summing Junctionp. 128
4.5.2.3 Mason's Rulep. 130
4.5.3 Block Diagram Construction from System Modelp. 132
4.6 Linearizationp. 138
4.6.1 Linearization of a Nonlinear Elementp. 138
4.6.1.1 Functions of Two Variablesp. 140
4.6.2 Linearization of a Nonlinear Modelp. 140
4.6.2.1 Operating Pointp. 140
4.6.2.2 Linearization Procedurep. 141
4.6.2.3 Small-Angle Linearizationp. 143
4.6.3 Linearization with MATLAB Simulinkp. 145
4.7 Summaryp. 148
Chapter 5 Mechanical Systemsp. 155
5.1 Mechanical Elementsp. 155
5.1.1 Mass Elementsp. 155
5.1.2 Spring Elementsp. 157
5.1.3 Damper Elementsp. 158
5.1.4 Equivalencep. 160
5.2 Translational Systemsp. 167
5.2.1 Degrees of Freedomp. 167
5.2.2 Newton's Second Lawp. 168
5.2.3 Free-Body Diagramsp. 168
5.2.4 Static Equilibrium Position and Coordinate Referencep. 171
5.2.5 Massless Junctionsp. 176
5.2.6 D'Alembert's Principlep. 178
5.3 Rotational Systemsp. 184
5.3.1 General Moment Equationp. 184
5.3.2 Modeling of Rigid Bodies in Plane Motionp. 185
5.3.3 Mass Moment of Inertiap. 188
5.3.4 Pure Rolling Motionp. 192
5.4 Mixed Systems: Translational and Rotationalp. 199
5.4.1 Force and Moment Equationsp. 199
5.4.2 Energy Methodp. 206
5.5 Gear-Train Systemsp. 214
5.6 System Modeling with Simulink and Simscapep. 219
5.6.1 Translational Systemsp. 219
5.6.2 Rotational Systemsp. 226
5.7 Summaryp. 231
Chapter 6 Electrical, Electronic, and Electromechanical Systemsp. 239
6.1 Electrical Elementsp. 239
6.1.1 Resistorsp. 240
6.1.2 Inductorsp. 242
6.1.3 Capacitorsp. 243
6.2 Electric Circuitsp. 247
6.2.1 Kirchhoff s Voltage Lawp. 247
6.2.2 Kirchhoff's Current Lawp. 249
6.2.3 Node Methodp. 252
6.2.4 Loop Methodp. 255
6.2.5 State Variables of Circuitsp. 257
6.3 Operational Amplifiersp. 261
6.4 Electromechanical Systemsp. 266
6.4.1 Elemental Relations of Electromechanical Systemsp. 266
6.4.2 Armature-Controlled Motorsp. 268
6.4.3 Field-Controlled Motorsp. 272
6.5 Impedance Methodsp. 275
6.5.1 Impedances of Electric Elementsp. 276
6.5.2 Series and Parallel Impedancesp. 276
6.5.3 Mechanical Impedancesp. 280
6.6 System Modeling with Simulink and Simscapep. 281
6.6.1 Electric Circuitsp. 281
6.6.2 Operational Amplifiersp. 286
6.6.3 DC Motorsp. 287
6.7 Summaryp. 292
Chapter 7 Fluid and Thermal Systemsp. 299
7.1 Pneumatic Systemsp. 299
7.1.1 Ideal Gasesp. 299
7.1.2 Pneumatic Capacitancep. 300
7.1.3 Modeling of Pneumatic Systemsp. 301
7.2 Liquid-Level Systemsp. 304
7.2.1 Hydraulic Capacitancep. 305
7.2.2 Hydraulic Resistancep. 307
7.2.3 Modeling of Liquid-Level Systemsp. 308
7.3 Thermal Systemsp. 316
7.3.1 First Law of Thermodynamicsp. 316
7.3.2 Thermal Capacitancep. 317
7.3.3 Thermal Resistancep. 318
7.3.4 Modeling of Heat Transfer Systemsp. 321
7.4 System Modeling with Simulink and Simscapep. 329
7.5 Summaryp. 337
Chapter 8 System Responsep. 341
8.1 Types of Responsep. 341
8.2 Transient Response and Steady-State Responsep. 341
8.2.1 Transient Response of First-Order Systemsp. 342
8.2.1.1 Free Response of First-Order Systemsp. 342
8.2.1.2 Impulse Response of First-Order Systemsp. 343
8.2.1.3 Step Response of First-Order Systemsp. 343
8.2.1.4 Ramp Response of First-Order Systemsp. 345
8.3 Transient Response of Second-Order Systemsp. 347
8.3.1 Free Response of Second-Order Systemsp. 349
8.3.1.1 $$$ Initial Response in MATLABp. 350
8.3.2 Impulse Response of Second-Order Systemsp. 351
8.3.2.1 $$$ Impulse Response in MATLABp. 353
8.3.3 Step Response of Second-Order Systemsp. 354
8.3.3.1 $$$ Step Response in MATLABp. 355
8.3.3.2 $$$ Response Analysis Using MATLAB Simulinkp. 357
8.4 Frequency Responsep. 365
8.4.1 Frequency Response of Stable, Linear Systemsp. 366
8.4.1.1 Frequency Response of First-Order Systemsp. 367
8.4.1.2 Frequency Response of Second-Order Systemsp. 368
8.4.2 Bode Diagramp. 370
8.4.2.1 $$$ Plotting Bode Diagrams in MATLABp. 371
8.4.2.2 Bode Diagram of First-Order Systemsp. 371
8.4.2.3 Bode Diagram of Second-Order Systemsp. 373
8.5 Solving the State Equationp. 379
8.5.1 Formal Solution of the State Equationp. 379
8.5.1.1 Matrix Exponentialp. 379
8.5.1.2 $$$ Formal Solution in MATLABp. 381
8.5.2 Solution of the State Equation via Laplace Transformationp. 382
8.5.3 Solution of the State Equation via State-Transition Matrixp. 383
8.6 Response of Nonlinear Systems $$$p. 385
8.6.1 Numerical Solution of the State-Variable Equationsp. 385
8.6.1.1 Fourth-Order Runge-Kutta Methodp. 385
8.6.2 Response via MATLAB Simulinkp. 388
8.6.3 Response of the Linearized Modelp. 388
8.7 Summaryp. 391
Chapter 9 Introduction to Vibrationsp. 397
9.1 Free Vibrationp. 397
9.1.1 Logarithmic Decrementp. 398
9.1.2 Coulomb Dampingp. 400
9.2 Forced Vibrationp. 405
9.2.1 Half-Power Bandwidthp. 406
9.2.2 Rotating Unbalancep. 409
9.2.3 Harmonic Base Excitationp. 411
9.3 Vibration Suppressionsp. 415
9.3.1 Vibration Isolatorsp. 415
9.3.2 Vibration Absorbersp. 418
9.4 Modal Analysisp. 423
9.4.1 Eigenvalue Problemp. 423
9.4.2 Orthogonality of Modesp. 428
9.4.3 Response to Initial Excitationsp. 430
9.4.4 Response to Harmonic Excitationsp. 433
9.5 Vibration Measurement and Analysisp. 436
9.5.1 Vibration Measurementp. 437
9.5.2 System Identificationp. 438
9.6 Summaryp. 442
Chapter 10 Introduction to Feedback Control Systemsp. 449
10.1 Basic Concepts and Terminologiesp. 449
10.2 Stability and Performancep. 452
10.2.1 Stability of Linear Time-Invariant Systemsp. 453
10.2.2 Time-Domain Performance Specificationsp. 455
10.2.3 Frequency-Domain Performance Specificationsp. 460
10.3 Benefits of Feedback Controlp. 462
10.3.1 Stabilizationp. 462
10.3.2 Disturbance Rejectionp. 465
10.3.3 Reference Trackingp. 467
10.3.4 Sensitivity to Parameter Variationsp. 470
10.4 Proportional-Integral-Derivative Controlp. 473
10.4.1 Proportional Controlp. 474
10.4.2 Proportional-Integral Controlp. 476
10.4.3 PID Controlp. 478
10.4.4 Ziegler-Nichols Timing of PID Controllersp. 481
10.5 Root Locusp. 485
10.5.1 Root Locus of a Basic Feedback Systemp. 486
10.5.2 Analysis Using Root Locusp. 491
10.5.3 Control Design Using Root Locusp. 493
10.6 Bode Plotp. 498
10.6.1 Bode Plot of a Basic Feedback Systemp. 498
10.6.2 Analysis Using Bode Plotp. 505
10.6.3 Control Design Using Bode Plotp. 507
10.7 Full-State Feedbackp. 511
10.7.1 Analysis of State-Space Equationsp. 511
10.7.2 Control Design for Full-State Feedbackp. 515
10.8 Integration of Simulink and Simscape into Control Designp. 520
10.8.1 Control System Simulation Using Simulinkp. 520
10.8.2 Integration of Simscape into Control System Simulationp. 521
10.9 Summaryp. 525
Bibliographyp. 531
Appendix A

p. 533

Appendix B Useful Formulasp. 535
Indexp. 537