Cover image for Surfaces, interfaces, and thin films for microelectronics
Title:
Surfaces, interfaces, and thin films for microelectronics
Personal Author:
Publication Information:
Hoboken, NJ : Wiley-Interscience, 2008
ISBN:
9780470174470

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010160399 QD506 I73 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

The practical, accessible independent-study guide and text on surface science fundamentals and microelectronics processes, this reference explains key concepts and important analytical techniques. It discusses films and interfaces, electronic passivation of semiconductor-dielectric film interfaces, the Si-SiO2 interface, and other MOSFET interfaces, and includes figures, charts, exercises, and examples of applications. This is the ideal guide to help professionals in the electronics industry get up to speed fast. It is also an excellent text for upper-level graduate and undergraduate students.


Author Notes

Eugene A. Irene is Professor of Chemistry at the University of North Carolina, Chapel Hill.


Table of Contents

Prefacep. xi
Part I Fundamentals of Surfaces and Interfacesp. 1
1 Introduction to Surfacesp. 3
1.1 Introductionp. 3
1.2 Definition of a Surfacep. 5
1.3 Preparing Surfacesp. 8
1.4 Simple Model for a Surface: Terrace-Ledge-Kink Modelp. 9
1.4.1 Oxidation of Various Si Single-Crystal Orientationsp. 15
1.5 Roughnessp. 18
1.6 Summary of the Key Surface Conceptsp. 19
Referencesp. 20
Suggested Readingp. 20
2 Structure of Surfacesp. 21
2.1 Introductionp. 21
2.2 Reciprocal Space (RESP)p. 22
2.2.1 Why Reciprocal Space?p. 22
2.2.2 Definition of RESPp. 22
2.3 The Ewald Constructionp. 26
2.4 Diffraction Techniquesp. 27
2.4.1 Rotating Crystal Methodp. 28
2.4.2 Powder Methodp. 28
2.4.3 Laue Methodp. 29
2.5 Wave Vector Representation-k Spacep. 30
2.6 Diffraction from Surfacesp. 31
2.6.1 RESP and Ewald Construction for Surfacesp. 31
2.6.2 Low Energy Electron Diffractionp. 34
2.6.3 The LEED Pattern and Reconstructionp. 38
2.6.4 Indexing LEED Patterns and Surface Structure Nomenclaturep. 40
2.6.5 LEED of Si(100)p. 45
2.7 Electron Microscopyp. 45
2.7.1 Transmission Electron Microscopyp. 46
2.7.1.1 Sample Preparationp. 49
2.7.1.2 TEM Resultsp. 52
2.7.2 Scanning Electron Microscopyp. 58
2.7.2.1 SEM Resultsp. 63
Referencesp. 63
Suggested Readingp. 63
3 Thermodynamics of Surfaces and Interfacesp. 65
3.1 Introductionp. 65
3.2 Surface Energyp. 65
3.3 Principles of Capillarityp. 67
3.3.1 Definitionsp. 67
3.3.2 Curved Surfacesp. 69
3.4 Surface Energy of Solidsp. 73
3.5 Interfaces and More Capillarityp. 79
3.6 SiO[subscript 2]-Si Interface Applicationp. 83
Referencesp. 88
Suggested Readingp. 88
4 Surface Roughnessp. 89
4.1 Introductionp. 89
4.2 Roughness Parametersp. 90
4.2.1 Height Parametersp. 90
4.2.2 Roughness Period or Wavelengthp. 92
4.2.3 Shape of Rough Featuresp. 93
4.2.4 Statistical Descriptors of Roughnessp. 95
4.2.5 Fractal Description of Roughnessp. 99
4.2.5.1 Fractal Definitionsp. 99
4.2.5.2 Extraction of the Fractal Dimension from Experimental Datap. 104
4.3 Roughness Effects on the Properties of Materialsp. 106
4.3.1 Effects of Roughness on Optical Propertiesp. 106
4.3.2 Roughness Effects on Electronic Propertiesp. 108
4.3.3 Roughness Effects on Other Physical and Chemical Propertiesp. 112
4.3.3.1 Roughness Effects on Contact Anglep. 112
4.3.3.2 Roughness Effects on Surface Thermodynamic Propertiesp. 113
4.3.3.3 Roughness Effects on Chemical Reactivityp. 115
Referencesp. 121
5 Surface Electronic Statesp. 123
5.1 Introductionp. 123
5.2 The Kronig-Penney Modelp. 124
5.2.1 The KP Model for Infinite Solidsp. 124
5.2.2 The KP Model Extended for Finite Solidsp. 131
5.3 Other Models for Surface Statesp. 135
5.3.1 Extrinsic Surface Statesp. 137
5.3.2 Band Bendingp. 138
5.4 Measurement of Surface Electronic Statesp. 139
5.4.1 Thermionic and Field Emissionp. 139
5.4.2 Kelvin Probep. 146
5.4.3 Photoemissionp. 148
5.4.3.1 Ultraviolet Photoemission Spectroscopy (UPS) and Inverse Photoelectron Spectroscopy (IPES)p. 151
5.4.3.2 X-Ray Photoelectron Spectroscopy (XPS)p. 156
Referencesp. 156
Suggested Readingp. 157
6 Other Surface Probesp. 159
6.1 Surface Topology or Morphology: Scanning Probe Microscopyp. 159
6.1.1 Scanning Tunneling Microscopyp. 161
6.1.1.1 Electron Tunnelingp. 161
6.1.1.2 Scanning Tunneling Microscopy Operationp. 168
6.1.1.3 Applicationsp. 172
6.1.2 Atomic Force Microscopyp. 176
6.1.2.1 Atomic Force Microscopy Operationp. 177
6.2 Surface Composition: Auger Electron Spectroscopy and Ion Scattering and Recoil Spectroscopyp. 181
6.2.1 Auger Electron Spectroscopyp. 181
6.2.2 Ion Scatteringp. 184
6.2.2.1 Time-of-Flight Ion Scattering and Recoil Spectrometryp. 185
6.2.2.2 Ion Scattering Spectroscopyp. 189
6.2.2.3 Direct Recoil Spectroscopyp. 190
6.2.2.4 Mass Spectroscopy of Recoiled Ionsp. 190
6.2.2.5 Mass Spectroscopy of Recoiled Ions Applicationsp. 192
Referencesp. 197
Suggested Readingp. 197
7 Charged Surfacesp. 199
7.1 Introductionp. 199
7.2 Electrostatics and the Poisson Equationp. 200
7.3 Two Simple Solutions to the Poisson Equationp. 205
7.4 Metal-Oxide-Semiconductor Field-Effect Transistor and Fermi Level Pinningp. 209
7.5 Metal-Oxide-Semiconductor Measurements for Interface Chargep. 213
7.5.1 Oxide Chargesp. 219
7.5.2 Measurement of Charges in the Si-SiO[subscript 2] Systemp. 224
Referencesp. 228
Suggested Readingp. 228
8 Adsorptionp. 229
8.1 Introductionp. 229
8.2 Physisorptionp. 230
8.3 Chemisorptionp. 233
8.4 Vapor-Solid Equilibrium at Surfacesp. 236
8.5 Adsorption Isothermsp. 238
8.6 Surface Reaction Mechanismsp. 243
8.7 Temperature-Programmed Desorptionp. 248
Referencesp. 255
Suggested Readingp. 255
9 Ellipsometry and Optical Properties of Surfaces, Interfaces, and Filmsp. 257
9.1 Introductionp. 257
9.2 What Is Ellipsometry?p. 258
9.3 What Does Ellipsometry Measure?p. 263
9.4 How Well Can Ellipsometry Measure?p. 264
9.5 Optical Modelsp. 266
9.6 Manual and Automated Ellipsometry Techniquesp. 274
9.6.1 Introductionp. 274
9.6.2 Isotropic Mediap. 276
9.6.3 Linear Polarizerp. 277
9.6.4 Compensatorp. 279
9.6.5 Detectorsp. 280
9.6.6 Null Ellipsometryp. 280
9.6.7 Rotating Element Ellipsometryp. 282
9.6.8 Spectroscopic Ellipsometryp. 284
9.6.9 Ellipsometry Alignment and Calibrationp. 286
9.7 Ellipsometry Measurementsp. 287
9.7.1 The Si Surfacep. 288
9.7.2 Surface with Overlayerp. 289
Referencesp. 293
Suggested Readingp. 293
Part II Microelectronics Applicationsp. 295
10 Films and Interfacesp. 297
10.1 Introductionp. 297
10.2 Nucleationp. 298
10.2.1 Homogenous Nucleationp. 299
10.2.1.1 Mixingp. 304
10.2.1.2 Volmer-Weber Theoryp. 305
10.2.2 Heterogeneous Nucleationp. 308
10.2.3 Nucleation Studiesp. 312
10.3 Film Formationp. 321
10.3.1 Film Growthp. 324
10.3.2 Film Depositionp. 329
10.3.2.1 Chemical Vapor Depositionp. 329
10.3.2.2 Physical Vapor Depositionp. 333
Referencesp. 349
Suggested Readingp. 349
11 Electronic Passivation of Semiconductor-Dielectric Film Interfacesp. 351
11.1 Introductionp. 351
11.2 Interface Electronic Statesp. 351
11.3 Electronic Passivationp. 361
11.4 Semiconductor Passivation Studiesp. 363
11.4.1 Si Thermal and Plasma Oxidationp. 363
11.4.2 Ge Passivation via Thermal and ECR Plasma Oxidation and SiO[subscript 2] Depositionp. 372
11.4.3 InP Passivation via Thermal and ECR Plasma Oxidation and SiO[subscript 2] Depositionp. 382
11.4.4 GaAs Passivation via Thermal and ECR Plasma Oxidation and SiO[subscript 2] Depositionp. 392
11.5 High Static Dielectric Constant Gate Oxidesp. 403
11.5.1 Barium Strontium Titanatep. 405
11.5.2 ZrO[subscript 2], HfO[subscript 2], and MgO as Potential High K Dielectricsp. 419
Referencesp. 434
Suggested Readingp. 435
12 The Si-SiO[subscript 2] Interface and Other MOSFET Interfacesp. 437
12.1 Introductionp. 437
12.2 Nature of the Si-SiO[subscript 2] Interfacep. 438
12.3 Other Techniques for Interface Studiesp. 445
12.3.1 Spectroscopic Immersion Ellipsometry (SIE)p. 445
12.3.2 Tunneling Currents for Measurement of Refractive Index, Film Thickness, and Roughnessp. 453
12.3.2.1 Tunneling Current Oscillation Measurementp. 453
12.3.2.2 Application to SiO[subscript 2]: Refractive Index, Film Thickness, and Roughnessp. 457
12.3.3 Interfacial and Film Stressp. 478
12.4 Other Microelectronics Interfacesp. 490
12.4.1 Introductionp. 490
12.4.2 Electronic Characteristics of Junctionsp. 490
12.4.3 Ideal Metal-Semiconductor Junctionsp. 492
12.4.4 Ideal Semiconductor-Semiconductor PN Junctionsp. 495
12.4.5 Nonideal Junctionsp. 496
Referencesp. 501
Suggested Readingp. 502
Indexp. 503