Cover image for Electromagnetics, microwave circuit and antenna design for communications engineering
Title:
Electromagnetics, microwave circuit and antenna design for communications engineering
Personal Author:
Edition:
2nd ed.
Publication Information:
Norwood, MA : Artech House, 2006
ISBN:
9781580539074

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003588732 TK454.4.E5 R87 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Peter Russer's introduction to electromagnetics is intended as a resource for understanding the application of the subject in current, emerging and future broadband communications systems and high-speed analogue and digital electronic circuits and systems.


Author Notes

Peter Russer received his Dipl.-Ing. and Dr. techn. degrees in Electrical Engineering from the Vienna University of Technology.

He is a Professor and Head of the Institute for High Frequency Engineering at Technische Universität München in Germany. He is a Fellow of the IEEE.

050


Table of Contents

Prefacep. xvii
Chapter 1 Introductionp. 1
Referencesp. 6
Chapter 2 Basic Electromagneticsp. 9
2.1 The Electromagnetic Field Conceptp. 9
2.2 Field Intensitiesp. 12
2.3 Current and Flux Densitiesp. 16
2.4 Constitutive Relationsp. 18
2.5 The Charge Densityp. 23
2.6 The Maxwell Puzzlep. 24
2.7 The Integral Form of Maxwell's Equationsp. 26
2.8 The Electromagnetic Wavep. 29
2.8.1 The Wave Equationp. 35
2.8.2 The Polarization of Electromagnetic Wavesp. 36
2.9 Kirchhoff's Lawsp. 38
2.10 Maxwell's Equations in Local Formp. 41
2.11 Time-Harmonic Electromagnetic Fieldsp. 43
2.12 Maxwell's Equations in the Frequency Domainp. 44
2.13 Curvilinear Coordinatesp. 46
2.14 Boundary Conditionsp. 47
2.15 Problemsp. 56
Referencesp. 59
Chapter 3 Potentials and Wavesp. 61
3.1 The Electromagnetic Potentialsp. 61
3.2 The Helmholtz Equationp. 65
3.3 Time-Harmonic Plane Wavesp. 67
3.3.1 Time-Harmonic Plane Waves in Lossless Mediump. 69
3.3.2 Complex Wavesp. 72
3.4 TM and TE Fields and Wavesp. 74
3.5 Reflection and Transmission of Plane Wavesp. 77
3.5.1 Reflection and Diffraction of a TE Wave at a Plane Boundaryp. 80
3.5.2 Reflection and Diffraction of a TM Wave at a Plane Boundaryp. 83
3.5.3 Total Reflectionp. 86
3.6 Waves in Planar Layered Mediap. 89
3.7 Thin Conducting Sheetsp. 93
3.8 The Vector Wave Equationp. 94
3.9 Circular Cylindrical Wavesp. 98
3.9.1 Excitation of a Cylindric Wave by a Uniform Current Filamentp. 101
3.10 Spherical Wavesp. 106
3.11 Problemsp. 106
Referencesp. 107
Chapter 4 Concepts, Methods, and Theoremsp. 109
4.1 Energy and Powerp. 109
4.2 Field Theoretic Formulation of Tellegen's Theoremp. 116
4.3 Sources of the Electromagnetic Fieldp. 118
4.4 The Uniqueness Theoremp. 120
4.5 The Equivalence Principlep. 121
4.6 Babinet's Principlep. 123
4.7 Reciprocityp. 125
4.7.1 The Lorentz Reciprocity Theoremp. 125
4.7.2 The Reciprocity Theorem for Impressed Sourcesp. 126
4.8 Green's Functionp. 128
4.9 The Integral Equation Methodp. 133
4.10 The Free-Space Green's Dyadic Formp. 136
4.11 Green's Theoremsp. 136
4.11.1 The Scalar Green's Theoremsp. 136
4.11.2 Green's Theorems in Two Dimensionsp. 138
4.11.3 The Vector Green's Theoremsp. 140
4.12 Integral Formulation of the Equivalence Principlep. 141
4.13 The Sturm-Liouville Equationp. 143
4.14 Spectral Representation of Green's Functionsp. 146
4.15 Problemsp. 148
Referencesp. 148
Chapter 5 Static and Quasistatic Fieldsp. 151
5.1 Conditions for Static and Quasistatic Fieldsp. 151
5.2 Static and Quasistatic Electric Fieldsp. 153
5.2.1 Green's Function for the Static Electric Fieldp. 153
5.2.2 Capacitancep. 155
5.3 Static and Quasistatic Magnetic Fieldsp. 161
5.3.1 Green's Function for the Static Magnetic Fieldp. 161
5.3.2 Inductancep. 163
5.4 The Laplace Equationp. 169
5.4.1 Potential Separation Planesp. 170
5.4.2 Three-Dimensional Laplace Equation in Cartesian Coordinatesp. 171
5.5 Conformal Mappingp. 174
5.5.1 Field of an Elliptic Cylindric Linep. 181
5.5.2 Field of a Coaxial Linep. 183
5.5.3 Parallel Wire Linep. 186
5.6 The Schwarz-Christoffel Transformationp. 191
5.6.1 The Coplanar Linep. 193
5.6.2 The Coplanar Striplinep. 196
5.6.3 The Striplinep. 197
5.7 Problemsp. 201
Referencesp. 204
Chapter 6 Waves at the Surface of Conducting Mediap. 207
6.1 Transverse Magnetic Surface Wavesp. 208
6.2 Surface Currentsp. 216
6.3 Surface Current Lossesp. 221
6.4 Induced Surface Currentsp. 224
6.5 Problemsp. 227
Referencesp. 228
Chapter 7 Transmission-Lines and Waveguidesp. 229
7.1 Introductionp. 229
7.2 Phase and Group Velocityp. 232
7.3 The Field Componentsp. 233
7.4 Waveguides for Transverse Electromagnetic Wavesp. 235
7.5 Multiconductor Transmission-Linesp. 249
7.6 Quasi-TEM Modes of Transmission-Linesp. 254
7.6.1 Quasi-TEM Modes of Two-Conductor Transmission-Linesp. 254
7.6.2 Quasi-TEM Modes of Multiconductor Transmission-Linesp. 259
7.7 Planar Transmission-Linesp. 260
7.7.1 The Microstrip Linep. 260
7.7.2 Quasistatic Approximation for the Microstrip Linep. 262
7.7.3 Coplanar Waveguide and Coplanar Striplinep. 265
7.8 Hollow Waveguidesp. 266
7.8.1 TE Modesp. 266
7.8.2 TM Modesp. 270
7.8.3 Modal Expansions in Waveguidesp. 272
7.9 Rectangular Waveguidesp. 276
7.9.1 Transverse Electric Modesp. 276
7.9.2 Transverse Magnetic Modesp. 282
7.9.3 Power Flow in the Waveguidep. 284
7.9.4 Orthogonality of the Waveguide Modesp. 285
7.9.5 Generalized Currents and Voltages in Waveguidesp. 286
7.9.6 Attenuation Due to Conductor Lossesp. 289
7.9.7 Attenuation Due to Dielectric Lossesp. 291
7.10 Circular Cylindric Waveguidesp. 292
7.10.1 The Circular Waveguide Modesp. 292
7.10.2 Power Flow and Attenuation in the TE[subscript 01] Modep. 298
7.11 Radial Waveguidesp. 300
7.11.1 Radial Parallel Plate Waveguidep. 300
7.11.2 Wedged Radial Parallel Plate Waveguidep. 307
7.12 Spherical Waveguidesp. 309
7.12.1 Conical Waveguidep. 311
7.12.2 Biconical Waveguidep. 313
7.13 Dielectric Waveguides and Optical Fibersp. 316
7.13.1 Homogeneous Planar Dielectric Waveguidesp. 316
7.13.2 Dielectric Slab with Single-Sided Metallizationp. 320
7.13.3 Circular Dielectric Waveguides with Step Index Profilep. 322
7.14 Problemsp. 329
Referencesp. 333
Chapter 8 The Transmission-Line Equationsp. 335
8.1 The Transmission-Line Conceptp. 335
8.2 Generalized Voltages and Currentsp. 337
8.3 Solution of the Transmission-Line Equationsp. 341
8.4 Wave Amplitudesp. 344
8.5 Reflection Coefficient and Smith Chartp. 346
8.5.1 Impedance Matching with Lumped Elementsp. 353
8.5.2 Impedance Matching with Stubsp. 355
8.6 Solution of the Multiconductor Transmission-Line Equationsp. 356
8.7 Multimode Excitation of Uniform Hollow Waveguidesp. 363
8.7.1 The Transverse Field Equationsp. 363
8.7.2 Modal Field Representationp. 366
8.7.3 Multimode Transmission-Line Equations for Hollow Waveguidesp. 368
8.7.4 Multimode Transmission-Line Equations of Lossless Waveguides without Internal Sourcesp. 374
8.8 Green's Functions for Transmission-Linesp. 375
8.8.1 Green's Function for the Transmission-Line with Matched Terminationsp. 378
8.8.2 Green's Function for the Transmission-Line with Arbitrary Linear Passive Terminationsp. 379
8.9 Problemsp. 381
Referencesp. 384
Chapter 9 Resonant Circuits and Resonatorsp. 385
9.1 The Linear Passive One-Portp. 385
9.2 The Reactance Theoremp. 387
9.3 Resonant Circuitsp. 389
9.4 The Transmission-Line Resonatorp. 392
9.5 Cavity Resonatorsp. 395
9.5.1 The Rectangular Cavity Resonatorp. 395
9.5.2 The Circular Cylindric Cavity Resonatorp. 399
9.6 Coupling of Resonant Circuits and Resonatorsp. 402
9.6.1 The Loaded Quality Factorp. 402
9.6.2 Termination of a Transmission-Line with a Resonant Circuitp. 403
9.6.3 Inductive Coupling of Cavity Resonatorsp. 405
9.7 Orthogonality of the Resonator Modesp. 407
9.8 Excitation of Resonators by Internal Sourcesp. 409
9.9 Problemsp. 411
Referencesp. 412
Chapter 10 Passive Microwave Circuitsp. 413
10.1 Linear Multiportsp. 413
10.2 Source-Free Linear Multiportsp. 414
10.2.1 Impedance and Admittance Representationsp. 414
10.2.2 The Chain Matrixp. 415
10.2.3 The Scattering Matrixp. 419
10.2.4 The Transmission Matrixp. 424
10.3 Tellegen's Theoremp. 425
10.3.1 Connection Networksp. 428
10.3.2 Tellegen's Theorem for Discretized Fieldsp. 429
10.4 The Power Propertiesp. 430
10.5 Reciprocal Multiportsp. 431
10.6 Elementary Two-Portsp. 433
10.7 Signal Flow Graphsp. 436
10.8 Lumped Element Equivalent Circuitsp. 439
10.8.1 Foster Representation of Reactance Multiportsp. 439
10.8.2 Cauer Representation of Radiating Structuresp. 445
10.9 Obstacles in Waveguidesp. 450
10.10 The Symmetry Properties of Waveguide Junctionsp. 456
10.10.1 Symmetric Three-Port Waveguide Junctionsp. 457
10.10.2 Symmetric Four-Port Waveguide Junctionsp. 460
10.11 Problemsp. 463
Referencesp. 466
Chapter 11 Periodic Structures and Filtersp. 467
11.1 Periodic Electromagnetic Structuresp. 467
11.1.1 TE Modes in Rectangular Periodic Waveguidesp. 467
11.1.2 Sinusoidal Variation of the Permittivityp. 472
11.2 Wave Parameter Theory of Two-Portsp. 474
11.3 Lumped Low-Pass Filter Prototypesp. 481
11.3.1 The Butterworth Prototypep. 482
11.3.2 The Chebyshev Prototypep. 485
11.4 Ladder Filter Networksp. 488
11.4.1 Butterworth Ladder Networksp. 489
11.4.2 Chebyshev Ladder Networksp. 490
11.5 Frequency Transformationp. 492
11.5.1 Low-Pass to High-Pass Transformationp. 492
11.5.2 Low-Pass to Band-Pass Transformationp. 493
11.5.3 Low-Pass to Band-Stop Transformationp. 495
11.6 Transmission-Line with Periodic Loadp. 497
11.7 Plane Wave Scattering by Periodic Structuresp. 501
11.7.1 Scattering of te Waves by Periodic Structuresp. 501
11.7.2 Scattering of tm Waves by Periodic Structuresp. 505
11.8 Metamaterialsp. 507
11.9 Problemsp. 515
Referencesp. 517
Chapter 12 Radiation from Dipolesp. 519
12.1 The Hertzian Dipolep. 519
12.2 Aperiodic Spherical Wavesp. 524
12.3 Vertically Oriented Electric Dipole over Lossy Half-Spacep. 528
12.3.1 The Far-Field of the Vertical Dipole over Groundp. 538
12.3.2 The Surface Wavep. 539
12.4 Horizontally Oriented Electric Dipole over Lossy Half-Spacep. 540
12.5 Problemsp. 544
Referencesp. 545
Chapter 13 Antennasp. 547
13.1 Introductionp. 547
13.2 Linear Antennasp. 549
13.3 The Integral Equation for the Linear Antennap. 555
13.4 The Impedance of the Linear Antennap. 558
13.5 The Loop Antennap. 560
13.6 Receiving Antennasp. 563
13.6.1 The Hertzian Dipole as Receiving Antennap. 563
13.6.2 The Loop Antenna as Receiving Antennap. 564
13.6.3 The Linear Dipole Antenna as Receiving Antennap. 565
13.7 Gain and Effective Antenna Aperturep. 569
13.8 Antenna Arraysp. 575
13.8.1 Linear Antenna Arraysp. 575
13.8.2 Circular Antenna Arraysp. 577
13.9 Aperture Antennasp. 578
13.9.1 Radiating Aperturesp. 578
13.9.2 Horn Antennasp. 582
13.9.3 Gain and Effective Area of Aperture Antennasp. 585
13.9.4 Mirror and Lens Antennasp. 587
13.9.5 Slot Antennasp. 589
13.10 Microstrip Antennasp. 591
13.10.1 Planar Rectangular Patch Antennap. 593
13.11 Broadband Antennasp. 595
13.12 Problemsp. 597
Referencesp. 601
Chapter 14 Numerical Electromagneticsp. 603
14.1 Introductionp. 603
14.2 The Method of Momentsp. 605
14.3 The Transmission-Line Matrix Methodp. 611
14.4 The Mode Matching Methodp. 617
Referencesp. 623
Appendix A Vectors and Differential Formsp. 627
A.1 Vectorsp. 627
A.2 Differential Formsp. 631
A.2.1 Products of Exterior Differential Formsp. 632
A.2.2 The Contractionp. 633
A.2.3 The Exterior Derivativep. 634
A.2.4 The Laplace Operatorp. 635
A.3 Stokes' Theoremp. 636
A.4 Curvilinear Coordinatesp. 640
A.4.1 General Cylindrical Coordinatesp. 646
A.4.2 Circular Cylindric Coordinatesp. 647
A.4.3 Spherical Coordinatesp. 650
A.4.4 Twisted Formsp. 653
A.4.5 Integration of Differential Forms by Pullbackp. 653
A.5 Double Differential Formsp. 654
A.6 Relations between Exterior Calculus and Conventional Vector Notationp. 656
A.6.1 Differential Operatorsp. 656
A.6.2 Maxwell's Equationsp. 656
Referencesp. 657
Appendix B Special Functionsp. 659
B.1 Ordinary Bessel Functionsp. 659
B.2 Modified Bessel Functionsp. 662
B.3 Spherical Bessel Functionsp. 665
B.4 Legendre Polynomialsp. 667
B.5 Spherical Harmonicsp. 670
Referencesp. 672
Appendix C Linear Algebrap. 673
C.1 Unitary Vector Spacep. 673
C.2 Diagonalization of a Matrixp. 679
C.3 Matrix Functionsp. 681
C.4 The Hilbert Spacep. 683
C.4.1 Linear Operators in Hilbert Spacep. 686
C.4.2 Function Spacesp. 691
C.4.3 Function Spaces with Biorthogonal Basisp. 693
Referencesp. 696
Appendix D Fourier Series and Fourier Transformp. 697
D.1 The Fourier Seriesp. 697
D.2 The Fourier Integralp. 699
D.3 The Delta Distributionp. 701
Referencesp. 704
Appendix E Complex Integrationp. 705
E.1 Analytic Functionsp. 705
E.2 The Residue Theoremp. 707
E.3 The Saddle-Point Methodp. 708
Referencesp. 710
List of Symbolsp. 711
About the Authorp. 717
Indexp. 719