Cover image for Shock, impact and explosion : structural analysis and design
Title:
Shock, impact and explosion : structural analysis and design
Personal Author:
Publication Information:
London : Springer, 2008
Physical Description:
xliv, 1365 p. : ill. ; 24 cm.
ISBN:
9783540770671

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010194076 TA645 B364 2009 Open Access Book Book
Searching...
Searching...
30000003498205 TA645 B364 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

The dynamics of shock, impact and explosions are an important consideration in the design of structures. This book provides a detailed and illustrated study of structural dynamics of almost all types of shocks, impacts and explosions. After a comprehensive survey of accidents and explosions, the author covers all areas of basic structural dynamics and provides a full treatment of impact dynamics. Two chapters are devoted to a detailed analysis and numerical modelling for explosions occurring in air underground and underwater as well as formulations for the finite element analysis of shock impact and explosion. The last part of the book deals with many detailed case studies on structures of numerous materials like steel, composites, and concrete structures. Shock, Impact and Explosion is devoted to research and practising engineers, designers, technologists, mathematician and specialists in computer-aided techniques.


Table of Contents

Preface: Impact and Explosion - Analysis and Designp. VII
1 Accident Surveyp. 1
1.1 Introductionp. 1
1.2 Wind, Hurricane and Tornado Generated Missilesp. 1
1.2.1 Wind Storm Statisticsp. 2
1.3 Impact and Explosion at Seap. 2
1.4 Car Collisions and Explosionsp. 6
1.5 Train Collisions and Impactsp. 6
1.6 Aircraft and Missile Impacts, Crashes and Explosionsp. 13
1.6.1 Recent Investigations with NTSB Participationp. 34
1.7 Explosions With and Without Impactp. 56
1.8 Nuclear Explosions and Loss-of-Coolant Accidentsp. 82
1.9 The Gulf Warp. 84
1.10 Recent Air Crashes: Aircraft Impact at Ground Levelp. 85
1.11 The Dust Explosion Hazardp. 85
1.11.1 Dust Explosions in the United States, 1900-1956p. 86
1.11.2 Dust Explosions in the Federal Republic of Germany, 1965-1985p. 87
1.11.3 Recent Statistics of Grain Dust Explosion in the United Statesp. 87
1.12 The Explosion in a Flour Warehouse in Turin on 14 December 1785p. 92
1.13 Grain Dust Explosions in Norwayp. 92
1.13.1 Wheat Grain Dust, Stavanger Port Silo, June 1970p. 92
1.13.2 Wheat Grain Dust, New Part of Stavanger Port Silo, October 1988p. 93
1.13.3 Grain Dust (Barley/Oats), Head House of the Silo Plant at Kambo, June 1976p. 93
1.13.4 Malted Barley Dust, Oslo Port Silo, July 1976p. 94
1.13.5 Malted Barley Dust, Oslo Port Silo, June 1987p. 94
1.14 A Dust Explosion in a Fish Meal Factory in Norway in 1975p. 94
1.15 Smoldering Gas Explosion in a Silo Plant in Stavanger, Norway, in November 1985p. 96
1.16 Four Grain Dust Explosions in the United States, 1980-1981p. 96
1.16.1 Inland Grain Terminal at St. Joseph, Missouri, April 1980p. 96
1.16.2 River Grain Terminal at St. Paul, Minnesota, 10 June 1980p. 97
1.17 Two Devastating Aluminum Dust Explosionsp. 98
1.17.1 Mixing Section of Premix Plant of Slurry Explosive Factory at Gullaug, Norway, in 1973p. 98
1.17.2 Large Export Grain Silo Plant at Corpus Christi, Texas, April 1981p. 99
1.18 Smoldering Gas Explosions in a Large Storage Facility for Grain and Feedstuffsp. 100
1.19 Linen Flax Dust Explosion in Harbin Linen Textile Plantp. 101
1.19.1 Explosion Initiation and Development, Scenario 1p. 101
1.19.2 Explosion Initiation and Development, Scenario 2p. 103
1.20 Fires and Explosions in Coal Dust Plantsp. 104
1.20.1 Methane Explosion in 17,000 m 3 Coal Silo at Elkford, British Columbia, Canada, in 1982p. 104
2 Data on Missiles, Impactors, Aircraft and Explosionsp. 105
2.1 Introductionp. 105
2.2 Types of Conventional Missiles and Impactorsp. 105
2.2.1 Tornado- and Wind-Generated Missilesp. 106
2.2.2 Plant-Generated Missilesp. 106
2.2.3 Impact Due to Jet Fluid and Rock Blastingp. 113
2.2.4 Snow Load as an Impactorp. 114
2.2.5 Falling or Dropped Weights as Impactorsp. 117
2.2.6 Heavy Lorries, Trucks and Bulldozers as Impactorsp. 124
2.2.7 Railway Trainsp. 130
2.3 Military, Air Force and Navy Missiles and Impactorsp. 131
2.3.1 Introduction to Bombs, Rockets and Missilesp. 131
2.4 Data on Civilian and Military Aircraft, Tanks and Marine Vesselsp. 192
2.4.1 Civilian Aircraftp. 192
2.4.2 Boeing 737p. 193
2.4.3 Boeing 767-200ERp. 199
2.4.4 Boeing 777p. 200
2.5 Military Aircraftp. 205
2.5.1 British Aerospace Tornado Interdictor Strike (IDS) and Air Defence Variant (ADV)p. 205
2.5.2 Northrop F-5E and F-20 Tigersharkp. 206
2.5.3 General Dynamics F-16p. 206
2.5.4 General Dynamics F-p. 2
2.5.5 British Aerospace Jaguarp. 211
2.5.6 McDonnell Douglas F/A-18 Hornetp. 213
2.5.7 Soviet Union MIG Aircraftp. 216
2.5.8 Other Important Fighter/Bomber Aircraftp. 219
2.6 Lockheed SR-71 Blackbirdp. 231
2.6.1 Introductionp. 231
2.6.2 Limited Numbersp. 236
2.7 Northrop Grumman B-2 Spiritp. 237
2.7.1 Introductionp. 237
2.8 Grumman F-14 Tomcatp. 244
2.8.1 Introductionp. 244
2.9 McDonnell Douglas F-15 Eaglep. 246
2.9 Introductionp. 246
2.9.2 Multi-Role Fighterp. 247
2.10 McDonnell Douglas F/-18 Hornetp. 248
2.10.1 Introductionp. 248
2.10.2 Fighter Prototypesp. 249
2.11 Lockheed C-130 Herculesp. 252
2.11.1 Introductionp. 252
2.11.2 Designp. 257
2.11.3 Performancep. 257
2.11.4 Into servicep. 259
2.12 Mikoyan MIG-23/27 "Flogger"p. 259
2.12.1 Introductionp. 259
2.12.2 Fledgling "Floggers"p. 264
2.13 Sukhoi SU-25 "Frogfoot"p. 265
2.13.1 Introductionp. 265
2.13.2 Future "Frogfoots"p. 269
2.14 Sukhoi Su-27 "Flanker"p. 270
2.14.1 Introductionp. 270
2.14.2 Production Variantsp. 270
2.14.3 Long-Range Strikep. 273
2.14.4 Maritime Rolep. 273
2.14.5 Carrier Trailsp. 273
2.14.6 First Operation Cruisep. 274
2.14.7 Su-27 K Armament Optionsp. 274
2.15 Mikoyan MIG 25 "Foxbat"p. 275
2.15.1 Introductionp. 275
2.15.2 Mach 3 Spyplanep. 279
2.15.3 SAM Suppressionp. 279
2.16 Mikoyan MIG 29 "Fulcrum"p. 280
2.16.1 Introductionp. 280
2.16.2 Carrierborne "Fulcrum"p. 280
2.17 Mikoyan-Gurevich MiG-21/Chengdu J-7 "Fishbed"p. 282
2.17.1 Introductionp. 282
2.17.2 "Fishbed" Evolutionp. 282
2.17.3 Multi-Variant MiGp. 283
2.17.4 MiG at Warp. 283
2.18 Mikoyan MiG-31 "Foxhound"p. 285
2.18.1 Introductionp. 285
2.18.2 New Designp. 289
2.18.3 Record Breakerp. 289
2.18.4 Series Productionp. 291
2.19 EF2000 Fighter Designp. 293
2.19.1 Introductionp. 293
2.19.2 Flying Control Systemp. 293
2.19.3 No Tailplane Requiredp. 294
2.19.4 Direct Voice Inputp. 294
2.20 Saab Viggen (Variants)p. 294
2.20.1 Introductionp. 294
2.21 Dassault Mirage F1p. 296
2.21.1 Introductionp. 296
2.21.2 Reconnaissance Variantp. 298
2.21.3 Latest Upgradesp. 302
2.22 Dassault Mirage 2000p. 302
2.22.1 Introductionp. 302
2.22.2 French Operationp. 306
2.22.3 Weaponryp. 307
2.22.4 Operatorsp. 307
2.22.5 The Futurep. 308
2.22.6 Designing the 2000Np. 308
2.23 Panavia Tornadop. 311
2.23.1 Introductionp. 311
2.23.2 Strike/Attackp. 312
2.24 Tupolev TU-22 Blinder/TU22M Backfirep. 313
2.24.1 Introductionp. 313
2.25 Helicoptersp. 313
2.25.1 Agusta A 101G and Variantsp. 313
2.25.2 McDonnell Douglas AH-64 Apachep. 325
2.26 Main Battle Tanks (MBTs) as Impactorsp. 349
2.26.1 Marine Vesselsp. 349
2.26.2 Offshore Floating Mobile and Semi-Submersible Structuresp. 355
2.27 Types of Explosionp. 357
2.27.1 Bombs, Shells and Explosivesp. 357
2.27.2 Gas Explosionsp. 383
2.27.3 Nuclear Explosionsp. 384
2.28 Dust Explosionsp. 393
2.28.1 Introductionp. 393
2.29 Underwater Explosionsp. 396
3 Basic Structural Dynamics for Impact, Shock and Explosionp. 399
3.1 General Introductionp. 399
3.2 Single-Degree-of-Freedom Systemp. 399
3.2.1 Unclamped Free Vibrationsp. 399
3.2.2 Solution of the Equationp. 401
3.2.3 Torsional Vibrationsp. 406
3.2.4 Free Damped Vibrationsp. 423
3.2.5 Undamped Forced Vibrations (Harmonic Disturbing Force)p. 431
3.2.5 Forced Vibrations with Viscous Damping (Harmonic Force)p. 441
3.2.6 Single-Degree Undamped Elasto-Plastic Systemp. 467
3.3 Two-Degrees-of-Freedom Systemp. 468
3.3.1 Undamped Free Vibrationsp. 474
3.3.2 Free Damped Vibrationp. 476
3.3.3 Forced Vibration with Dampingp. 477
3.3.4 Orthogonality Principlep. 479
3.4 Multi-Degrees-of-Freedom Systemsp. 480
3.4.1 Undamped Free Vibrationsp. 480
3.4.2 Orthogonality Principlep. 481
3.4.3 Concept of Unit Vectorsp. 482
3.4.4 Undamped Forced Vibrationsp. 483
3.4.5 Non-Linear Response of Multi-Degrees-of-Freedom Systems: Incremental Methodp. 483
3.4.6 Summary of the Wilson-¿ Methodp. 488
3.5 Basic Dynamic Analysis of Sonic Boomsp. 490
3.5.1 Introductionp. 490
3.5.2 Notation for Sonic Boom Analysisp. 491
3.5.3 Diffraction and Reflection of Sonic Boom Waves: Analytical Methodp. 491
3.5.4 Method of Analysisp. 493
3.6 Pressure-Time History of a Sonic Boom Wave on Window in a Buildingp. 499
3.6.1 Application to a Sonic Boom Wave Incident on a Buildingp. 508
3.6.2 Analysis of Resultsp. 513
4 Shock and Impact Dynamicsp. 519
4.1 Introductionp. 519
4.2 The Impactor as a Projectilep. 519
4.2.1 Direct Impulse/Impact and Momentump. 519
4.2.2 Oblique Impactp. 529
4.3 Aircraft Impact on Structures: Peak Displacement and Frequencyp. 533
4.4 Aircraft Impact: Load-Time Functionsp. 535
4.4.1 Introductionp. 535
4.4.2 Stevenson's Direct Head-On Impact Modelp. 535
4.4.3 Riera Modelp. 535
4.4.4 Model of Wolf et al.p. 538
4.5 Impact Due To Dropped Weightsp. 541
4.5.1 Impact on Piles and Foundationsp. 541
4.5.2 Classical or Rational Pile Formulap. 545
4.5.3 Impact on Foundationsp. 550
4.5.4 Rock Fall on Structuresp. 552
4.6 Impact on Concrete and Steelp. 555
4.6.1 General Introductionp. 555
4.6.2 Available Empirical Formulaep. 558
4.7 Impact on Soils/Rocksp. 576
4.7.1 Introductionp. 576
4.7.2 Empirical Formulations for Earth Penetrationp. 577
4.7.3 Velocity and Decelerationp. 581
4.7.4 Impact on Rock Masses Due to Jet Fluidsp. 583
4.8 Impact on Water Surfaces and Wavesp. 584
4.8.1 Introductionp. 584
4.8.2 Impact on Water Surfacesp. 586
4.8.3 Impact on Ocean Surfacesp. 592
4.8.4 Wave Impact on Rock Slopes and Beachesp. 598
4.9 Snow/Ice Impactp. 602
4.9.1 Introductionp. 602
4.9.2 Empirical Formulaep. 604
4.10 Analysis and Modeling of Shock Response of Ceramicsp. 611
4.10.1 Introductionp. 611
4.10.2 A Comparative Study of Resultsp. 613
4.11 Shock Analysis Involving Active Materialsp. 618
4.11.1 Introductionp. 618
4.11.2 Method of Analysisp. 618
4.11.3 Input Datap. 621
4.11.4 Resultsp. 621
4.12 Shock Impact Load onthe Containerp. 621
4.12.1 Introductionp. 621
4.12.2 Shock Impact Load Analysis of Rectangular Containerp. 622
4.12.3 Data and Numerical Calculation (a reference is to be made to Tables 4.18 and 4.19)p. 629
4.12.4 Drop Analysis Using 3D Dynamic Finite Element Analysisp. 630
4.13 Shock Load Capacity of Anchor in Concretep. 633
4.13.1 Introductionp. 633
4.13.2 Torque Controlled Expansion Anchorp. 633
4.13.3 Displacement Controlled Expansion Anchorsp. 633
4.13.4 Shock Load Impact Analysis of Expansion Anchorsp. 635
4.14 Concrete Structures Subjected to Fragment Impacts: Dynamic Behaviour and Material Modellingp. 635
4.14.1 Introductionp. 635
4.14.2 Modified Crack Softening Lawp. 642
4.14.3 The Modified Strain Rate Law for Concrete in Tensionp. 643
4.15 Impact Resistance of Fibre Concrete Beamsp. 647
4.15.1 Introductionp. 647
4.15.2 Slow Flexure Testsp. 652
4.15.3 Impact Testsp. 655
4.15.4 Impact Analysis of Polypropylene Fibre Reinforced Concrete Beam Using Finite Elementp. 655
4.15.5 Additional Datap. 655
4.15.6 Resultsp. 656
4.16 Bird Impact on Aircraftp. 657
4.16.1 Introductionp. 657
4.16.2 Birds, Structures and Bird Impactp. 658
4.16.3 Aircraft Vulnerable Zones for Bird Impactp. 659
4.16.4 Material Modelling and Finite Element Analysis and Resultsp. 661
4.16.5 LS-Dyna Gap/Contact Elementsp. 665
4.16.6 Bird Striking the Cock-Pit-Finite Element Analysisp. 668
5 Shock and Explosion Dynamicsp. 671
5.1 Introductionp. 671
5.2 Fundamental Analyses Related to an Explosionp. 671
5.2.1 Stress Waves and Blast Wavesp. 671
5.3 Explosions in Airp. 677
5.3.1 Thickness of the Shock Frontp. 682
5.3.2 Evaluation of Stagnation Pressure, Stagnation and Post-Shock Temperaturesp. 682
5.3.3 Oblique Shockp. 683
5.4 Shock Reflectionp. 684
5.4.1 Normal Shock Reflectionp. 684
5.4.2 Oblique Reflectionp. 687
5.5 Gas Explosionsp. 687
5.6 Dust Explosionsp. 694
5.6.1 The Schwal and Othmer Methodp. 695
5.6.2 Maisey Methodp. 695
5.6.3 Heinrich Methodp. 697
5.6.4 Palmer's Equationp. 700
5.6.5 Rust Methodp. 700
5.7 Steel-Concrete Composite Structuresp. 701
5.7.1 Introductionp. 701
5.7.2 Shear Connection: Full and Partial Interactionp. 708
5.7.3 Methods of Analysis and Designp. 709
5.8 Explosions in Soilsp. 724
5.8.1 Explosion Parameters for Soils/Rocksp. 725
5.8.2 Explosion Cavityp. 731
5.8.3 Ground Shock Coupling Factor due to Weapon Penetrationp. 735
5.9 Rock Blasting: Construction and Demolitionp. 740
5.9.1 Rock Blasting Using Chemical Explosives of Columnar Shape anda Shot Holep. 740
5.9.2 Primary Fragmentsp. 742
5.9.3 Blasting: Construction and Demolitionp. 746
5.10 Explosions in Waterp. 751
5.10.1 Introductionp. 751
5.10.2 Initial Parameters of Shock Waves in Waterp. 752
5.10.3 Major Underwater Shock Theoriesp. 757
5.10.4 Penney and Dasgupta Theoryp. 758
5.10.5 A Comparative Study of Underwater Shock Front Theoriesp. 759
5.10.6 Shock Wave Based on a Cylindrical Charge Explosionp. 760
5.10.7 Underwater Contact Explosionsp. 760
5.10.8 Underwater Shock-Wave Reflectionp. 761
5.11 Summary of Primary Effects of Under Water Explosion; Additional Explanatory Notes on Shock Pulse and Wavesp. 762
5.11.1 Detonation Process in Underwater Explosionp. 762
5.11.2 Compression Loads due to Underwater Explosionsp. 767
6 Dynamic Finite-Element Analysis of Impact and Explosionp. 769
6.1 Introductionp. 769
6.2 Finite-Element Equationsp. 769
6.3 Steps for Dynamic Non-Linear Analysisp. 781
6.3.1 Buckling State and Slip of Layers for Composite Sectionsp. 786
6.3.2 Strain Rate Effects Based on the Elastic-Viscoplastic Relationship for Earth Materials Under Impact and Explosionp. 787
6.3.3 Finite Element of Concrete Modellingp. 791
6.4 Ice/Snow Impactp. 798
6.5 Impact due to Missiles, Impactors and Explosions: Contact Problem Solutionsp. 801
6.6 High Explosionsp. 802
6.7 Spectrum Analysisp. 805
6.8 Solution Proceduresp. 806
6.8.1 Time-Domain Analysisp. 806
6.8.2 Frequency-Domain Analysisp. 808
6.8.3 Runge-Kutta Methodp. 809
6.9 Geometrically Non-Linear Problems in the Dynamic Finite Elementp. 809
6.9.1 Introductionp. 809
6.9.2 Criteria for the Iterative Approachp. 810
6.9.3 Solution Strategiesp. 811
6.9.4 General Formulationp. 814
6.9.5 Example: 6.1p. 816
6.10 Finite Element Analysis of Explosion Using the Method of Explosive Factorp. 817
6.11 Force or Load-Time Functionp. 819
6.11.1 Introductionp. 819
6.12 Finite-Element Mesh Schemesp. 822
A Steel and Compositesp. 835
A.1 Steel Structuresp. 835
A.1.1 Impact on Steel Beamsp. 835
A.1.2 Impact on Steel Platesp. 839
A.2 Composite Structuresp. 846
A.2.1 Composite Platesp. 846
A.3 Impact Analysis of Pipe Rupturep. 855
A.3.1 Experimental Datap. 855
A.4 Explosions in Hollow Steel Spherical Cavities and Domesp. 863
A.4.1 Steel Spherical Cavitiesp. 863
A.4.2 Steel Domesp. 865
A.5 Car Impact and Explosion Analysisp. 867
A.5.1 General Datap. 867
A.5.2 Finite-Element Analysis and Resultsp. 868
B Concrete Structuresp. 877
B.1 Introductionp. 877
B.2 Concrete Beamsp. 877
B.2.1 Reinforced Concrete Beamsp. 877
B.2.2 Pre-Stressed Concrete Beamsp. 883
B.2.3 Fibre-Reinforced Concrete Beamsp. 886
B.3 Reinforced Concrete Slabs and Wallsp. 891
B.3.1 Introductionp. 891
B.3.2 Slabs and Walls Under Impact Loadsp. 892
B.3.3 Design for Blast Resistancep. 899
B.3.4 Steel-Concrete Composite Structures Subject to Blast/Impact Loadsp. 924
B.3.5 An Office Building: Steel-Concrete Composite Slabs with R.C. Protective Walls Under Blast Loadingp. 931
B.3.6 Design and Analysis of a Building Against Blast Loadingp. 931
B.3.7 Impact Resistance of Steel Fibre Reinforced Concrete Panels/Slabsp. 956
B.4 Buildings and Structures Subject to Blast Loadsp. 959
B.4.1 Reinforced Concrete, Single-Storey Housep. 959
B.4.2 Blast Loads in the Demolition of Buildings and Cooling Towersp. 965
B.4.3 Impact and Explosion of Cooling Towers and Chimneysp. 966
B.5 Aircraft Crashes on PWR Containment Vessels (Buildings)p. 968
C Brickwork and Blockwork: Impact and Explosionp. 975
C.1 General Introductionp. 975
C.2 Finite-Element Analysis of Explosionp. 975
C.3 Bomb Explosion at a Wallp. 985
D Ice/Snow Impactp. 987
D.1 Introductionp. 987
D.2 Finite-Element Analysisp. 987
E Nuclear Reactorsp. 993
E.1 PWR: Loss-of-Coolant Accidentp. 993
E.1.1 Introduction to LOCAp. 993
E.1.2 Description of the PWR Vessel and Its Materialsp. 993
E.2 Nuclear Containment Under Hydrogen Detonationp. 997
E.3 Impact/Explosion at a Nuclear Power Station: Turbine Hallp. 1000
E.4 Jet Impingement Forces on PWR Steel Vessel Componentsp. 1010
F Concrete Nuclear Sheltersp. 1019
F.1 Introductionp. 1019
F.1.1 US Code Ultimate Strength Theory: General Formulaep. 1019
F.2 Design of a Concrete Nuclear Shelter Against Explosion and Other Loads Based on the Home Office Manualp. 1025
F.2.1 Basic Data (Home Office Code)p. 1025
F.2.2 Additional Data for Designs Based on US Codesp. 1025
F.3 Design of a Nuclear Shelter Based on the US Codesp. 1031
F.3.1 Introductionp. 1031
F.3.2 Wall Designp. 1031
F.4 Lacing Barsp. 1035
F.5 Finite-Element Analysisp. 1041
F.5.1 The Swedish Design and Detailsp. 1041
G Sea Environment: Impact and Explosionp. 1047
G.1 Multiple Wave Impact on a Beach Frontp. 1047
G.2 Explosions Around Damsp. 1052
G.3 Ship-to-Ship and Ship-to-Platform: Impact Analysisp. 1055
G.4 Jacket Platform: Impact and Explosionp. 1057
G.4.1 Ship Impact at a Jacket Platformp. 1057
G.5 Impact of Dropped Objects on Platformsp. 1063
G.5.1 Finite-Element Analysisp. 1068
G.5.2 Resultsp. 1075
H Soil/Rock Surface and Buried Structuresp. 1077
H.1 General Introductionp. 1077
H.2 Soil Strata Subject to Missile Impact and Penetrationp. 1077
H.2.1 Finite-Element Analysisp. 1078
H.2.2 Resultsp. 1080
H.2.3 Explosions in Soil Stratap. 1080
H.2.4 Craters Resulting from Explosionsp. 1080
H.2.5 Explosions in Boreholesp. 1084
H.2.6 Explosions in an Underground Tunnelp. 1084
H.2.7 Rock Fractures Caused by Water Jet Impactp. 1094
I Underground and Underwater Explosion and Their Effectsp. 1099
I.1 Underground Explosionp. 1099
I.2 Stress/Shock Waves Propagation: Analytical Investigationsp. 1107
I.2.1 Introductionp. 1107
I.2.2 The Numerical Modelp. 1108
I.2.3 A Comparative Study of the Finite Element Analysis Results with Cherry and Peterson Resultsp. 1114
J Bridgesp. 1129
J.1 Concrete Bridges Subject to Blast Loadsp. 1129
J.1.1 Introductionp. 1129
J.1.2 Design of the Precast Prestressed M6 Beam for the Overbridgep. 1132
J.2 Blast Analysis of Bridges Using Finite Elementp. 1148
J.2.1 General Informationp. 1148
J.2.2 Method of Analysis of Girders, Cap Beams and the Deckp. 1152
J.2.3 Analysis of Resultsp. 1152
J.3 Barge and Ship Collision with Bridge Piersp. 1154
J.3.1 Introduction to Barge and Vessel Collisionsp. 1154
J.3.2 Current Practice in Different Countries on Ship-Bridge Collisionp. 1155
J.3.3 Time Integration of Barge/Vessel Equation of Motionp. 1162
J.3.1 A Case Studyp. 1163
J.4 Highway Parapets Under Vehicle Impactp. 1163
J.4.1 Introductionp. 1163
J.4.2 Post, Bays and Configurationsp. 1165
J.4.3 Design Loading Valuesp. 1167
K Luggage Container Subject to Internal Explosionp. 1177
K.1 Introductionp. 1177
K.2 Data On Luggage Containerp. 1177
K.3 Analysis and Resultsp. 1181
L Blast and Impact on Buildings due to Aircraft Crashesp. 1183
L.1 Introductionp. 1183
L.2 Aircraft Information and Other Tower Datap. 1185
L.3 Input Data and Gneral Analysis of WTC-1 and WTC-2 (WORLD TRADE CENTRE)p. 1185
L.3.1 Geometrical Datap. 1185
L.3.2 Aircraft Impact Areas and Speedp. 1185
L.3.3 Connection Details, Structural Sizes and Other Parametersp. 1193
L.3.4 Columns, Plates and Spandrelsp. 1193
L.3.5 Typical Structural Detailsp. 1195
L.3.6 Analysis of Resultsp. 1198
Bibliographyp. 1205
Appendix 1 Subroutines for Program Isopar and Program F-Bangp. 1297
Indexp. 1359