Cover image for Biological database modeling
Title:
Biological database modeling
Publication Information:
Norwood, MA : Artech House, 2008
ISBN:
9781596932586

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010230052 QH324.2 B5645 2008 Open Access Book Book
Searching...
Searching...
30000010164530 QH324.2 B5645 2008 Open Access Book Book
Searching...
Searching...
30000010178918 QH324.2 B5645 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Modern biological research in areas like drug discovery produces a staggering volume of data, and the right modeling tools can help scientists apply it in ways never before imaginable. This collection of next-generation biodata modeling techniques combines innovative concepts, methods, and applications with case studies in genome, microarray, proteomics, and drug discovery projects that helps bioinformatics professionals develop ever-more powerful data management systems in any domain.


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xvii
Chapter 1 Introduction to Data Modelingp. 1
1.1 Generic Modern Markup Languagesp. 1
1.2 Modeling Complex Data Structuresp. 3
1.3 Data Modeling with General Markup Languagesp. 3
1.4 Ontologies: Enriching Data with Textp. 4
1.5 Hyperlinks for Semantic Modelingp. 5
1.6 Evolving Subject Indexesp. 6
1.7 Languagesp. 6
1.8 Viewsp. 7
1.9 Modeling Biological Datap. 7
Referencesp. 8
Chapter 2 Public Biological Databases for -Omics Studies in Medicinep. 9
2.1 Introductionp. 9
2.2 Public Databases in Medicinep. 10
2.3 Application of Public Bioinformatics Database in Medicinep. 11
2.3.1 Application of Genomic Databasep. 11
2.3.2 Application of Proteomic Databasep. 16
2.3.3 Application of the Metabolomics Databasep. 18
2.3.4 Application of Pharmacogenomics Databasep. 19
2.3.5 Application of Systomics Databasep. 21
Referencesp. 21
Chapter 3 Modeling Biomedical Datap. 25
3.1 Introductionp. 25
3.2 Biological Concepts and EER Modelingp. 27
3.2.1 Sequence Ordering Conceptp. 27
3.2.2 Input/Output Conceptp. 29
3.2.3 Molecular Spatial Relationship Conceptp. 30
3.3 Formal Definitions for EER Extensionsp. 31
3.3.1 Ordered Relationshipsp. 31
3.3.2 Process Relationshipsp. 33
3.3.3 Molecular Spatial Relationshipsp. 34
3.4 Summary of New EER Notationp. 35
3.5 Semantic Data Models of the Molecular Biological Systemp. 35
3.5.1 The DNA/Gene Modelp. 36
3.5.2 The Protein 3D Structure Modelp. 36
3.5.3 The Molecular Interaction and Pathway Modelp. 40
3.6 EER-to-Relational Mappingp. 41
3.6.1 Ordered Relationship Mappingp. 41
3.6.2 Process Relationship Mappingp. 42
3.6.3 Molecular Spatial Relationship Mappingp. 43
3.7 Introduction to Multilevel Modeling and Data Source Integrationp. 45
3.8 Multilevel Concepts and EER Modelingp. 46
3.9 Conclusionp. 48
Referencesp. 49
Chapter 4 Fundamentals of Gene Ontologyp. 51
4.1 Introduction to Gene Ontologyp. 51
4.2 Construction of an Ontologyp. 52
4.3 General Evolution of GO Structures and General Annotation Strategy of Assigning GO Terms to Genesp. 56
4.3.1 General Evolution of GO Structuresp. 56
4.3.2 General Annotation Strategy of Assigning GO Terms to Genesp. 57
4.4 Applications of Gene Ontology in Biological and Medical Sciencep. 57
4.4.1 Application of Gene Ontology in Biological Sciencep. 57
4.4.2 Application of Gene Ontology in Medical Sciencep. 58
Referencesp. 60
Chapter 5 Protein Ontologyp. 63
5.1 Introductionp. 63
5.2 What Is Protein Annotation?p. 64
5.3 Underlying Issues with Protein Annotationp. 64
5.3.1 Other Biomedical Ontologiesp. 65
5.3.2 Protein Data Frameworksp. 66
5.3.3 Critical Analysis of Protein Data Frameworksp. 68
5.4 Developing Protein Ontologyp. 68
5.5 Protein Ontology Frameworkp. 69
5.5.1 The ProteinOntology Conceptp. 70
5.5.2 Generic Concepts in Protein Ontologyp. 70
5.5.3 The ProteinComplex Conceptp. 71
5.5.4 Entry Conceptp. 71
5.5.5 Structure Conceptp. 72
5.5.6 StructuralDomains Conceptp. 72
5.5.7 FunctionalDomains Conceptp. 73
5.5.8 ChemicalBonds Conceptp. 74
5.5.9 Constraints Conceptp. 74
5.5.10 Comparison with Protein Annotation Frameworksp. 75
5.6 Protein Ontology Instance Storep. 76
5.7 Strengths and Limitations of Protein Ontologyp. 77
5.8 Summaryp. 78
Referencesp. 78
Chapter 6 Information Quality Management Challenges for High-Throughput Datap. 81
6.1 Motivationp. 81
6.2 The Experimental Contextp. 84
6.2.1 Transcriptomicsp. 86
6.2.2 Qualitative Proteomicsp. 88
6.3 A Survey of Quality Issuesp. 89
6.3.1 Variability and Experimental Designp. 89
6.3.2 Analysis of Quality Issues and Techniquesp. 91
6.3.3 Specificity of Techniques and Generality of Dimensionsp. 93
6.3.4 Beyond Data Generation: Annotation and Presentationp. 94
6.4 Current Approaches to Qualityp. 96
6.4.1 Modeling, Collection, and Use of Provenance Metadatap. 96
6.4.2 Creating Controlled Vocabularies and Ontologiesp. 97
6.5 Conclusionsp. 98
Acknowledgmentsp. 98
Referencesp. 98
Chapter 7 Data Management for Fungal Genomics: An Experience Reportp. 103
7.1 Introductionp. 103
7.2 Materials Tracking Databasep. 109
7.3 Annotation Databasep. 110
7.4 Microarray Databasep. 111
7.5 Target Curation Databasep. 111
7.6 Discussionp. 112
7.6.1 Issue of Data and Metadata Capturep. 113
7.7 Conclusionp. 116
Acknowledgmentsp. 116
Referencesp. 116
Chapter 8 Microarray Data Management: An Enterprise Information Approachp. 119
8.1 Introductionp. 119
8.2 Microarray Data Standardizationp. 122
8.2.1 Gene Ontologiesp. 123
8.2.2 Microarray Ontologiesp. 125
8.2.3 Minimum Information About a Microarray Experimentp. 125
8.3 Database Management Systemsp. 126
8.3.1 Relational Data Modelp. 127
8.3.2 Object-Oriented Data Modelp. 128
8.3.3 Object-Relational Data Modelp. 131
8.4 Microarray Data Storage and Exchangep. 131
8.4.1 Microarray Repositoryp. 133
8.4.2 Microarray Data Warehouses and Datamartsp. 133
8.4.3 Microarray Data Federationsp. 134
8.4.4 Enterprise Microarray Databases and M-KMp. 135
8.5 Challenges and Considerationsp. 136
8.6 Conclusionsp. 138
Acknowledgmentsp. 138
Referencesp. 139
Chapter 9 Data Management in Expression-Based Proteomicsp. 143
9.1 Backgroundp. 143
9.2 Proteomics Data Management Approachesp. 147
9.3 Data Standards in Mass Spectrometry Based Proteomics Studiesp. 149
9.4 Public Repositories for Mass Spectrometry Datap. 152
9.5 Proteomics Data Management Toolsp. 154
9.6 Expression Proteomics in the Context of Systems Biology Studiesp. 155
9.7 Protein Annotation Databasesp. 159
9.8 Conclusionsp. 159
Referencesp. 160
Chapter 10 Model-Driven Drug Discovery: Principles and Practicesp. 163
10.1 Introductionp. 163
10.2 Model Abstractionp. 165
10.2.1 Evolution of Modelsp. 166
10.3 Target Identificationp. 168
10.3.1 Sequence-to-Function Modelsp. 170
10.3.2 Sequence Alignments and Phylogenetic Treesp. 170
10.3.3 Structure-to-Function Modelsp. 172
10.3.4 Systems-Based Approachesp. 173
10.3.5 Target Validationp. 176
10.4 Lead Identificationp. 177
10.4.1 Target Structure-Based Designp. 177
10.4.2 Ligand-Based Modelsp. 179
10.5 Lead to Drug Phasep. 182
10.5.1 Predicting Drug-Likenessp. 182
10.5.2 ADMET Propertiesp. 182
10.6 Future Perspectivesp. 183
Acknowledgmentsp. 184
Referencesp. 184
Chapter 11 Information Management and Interaction in High-Throughput Screening for Drug Discoveryp. 189
11.1 Introductionp. 189
11.2 Prior Researchp. 191
11.3 Overview of Antimalarial Drug Discoveryp. 192
11.4 Overview of the Proposed Solution and System Architecturep. 193
11.5 HTS Data Processingp. 194
11.5.1 Introduction to HTSp. 194
11.5.2 Example of HTS for Antimalarial Drug Screeningp. 195
11.6 Data Modelingp. 199
11.6.1 The Database Designp. 202
11.7 User Interfacep. 204
11.8 Conclusionsp. 206
Acknowledgmentsp. 207
Referencesp. 207
Selected Bibliographyp. 208
About the Authorsp. 209
Indexp. 217