Cover image for Fundamentals of biomechanics
Title:
Fundamentals of biomechanics
Personal Author:
Publication Information:
Boca Raton : Taylor & Francis, 2013
Physical Description:
xv, 454 p. : ill. ; 26 cm.
ISBN:
9781466510371

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010307343 QH513 H87 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

In the last three or four decades, studies of biomechanics have expanded from simple topical applications of elementary mechanics to entire areas of study. Studies and research in biomechanics now exceed those in basic mechanics itself, underlining the continuing and increasing importance of this area of study. With an emphasis on biodynamic modeling, Fundamentals of Biomechanics provides an accessible, basic understanding of the principles of biomechanics analyses.

Following a brief introductory chapter, the book reviews gross human anatomy and basic terminology currently in use. It describes methods of analysis from elementary mathematics to elementary mechanics and goes on to fundamental concepts of the mechanics of materials. It then covers the modeling of biosystems and provides a brief overview of tissue biomechanics. The author then introduces the concepts of biodynamics and human body modeling, looking at the fundamentals of the kinematics, the kinetics, and the inertial properties of human body models. He supplies a more detailed analysis of kinematics, kinetics, and dynamics of these models and discusses the numerical procedures for solving the governing dynamical equations. The book concludes with a review of a few example applications of biodynamic models such as simple lifting, maneuvering in space, walking, swimming, and crash victim simulation.

The inclusion of extensive lists of problems of varying difficulty, references, and an extensive bibliography add breadth and depth to the coverage. Focusing on biodynamic modeling to a degree not found in other texts, this book equips readers with the expertise in biomechanics they need for advanced studies, research, and employment in biomedical engineering.


Author Notes

Ronald L. Huston is a Distinguished Research Professor in the School of Dynamic Systems, College of Engineering and Applied Science, at the University of Cincinnati, Ohio.


Table of Contents

Prefacep. xi
Acknowledgmentp. xiii
Authorp. xv
Chapter 1 Introductionp. 1
1.1 Principal Areas of Biomechanicsp. 1
1.2 Approach in This Bookp. 1
Problemp. 2
Referencesp. 2
Chapter 2 Review of Human Anatomy and Some Basic Terminologyp. 5
2.1 Gross (Whole-Body) Modelingp. 5
2.2 Position and Direction Terminologyp. 9
2.3 Terminology for Common Movementsp. 12
2.4 Skeletal Anatomyp. 16
2.5 Major Jointsp. 19
2.6 Major Muscle Groupsp. 20
2.7 Anthropometric Datap. 21
Problemsp. 23
Referencesp. 23
Chapter 3 Methods of Analysis I: Review of Vectors, Dyadics, Matrices, and Determinantsp. 25
3.1 Vectorsp. 25
3.2 Vector Algebra: Addition and Multiplication by Scalarsp. 25
3.2.1 Vector Characteristicsp. 25
3.2.2 Equality of Vectorsp. 26
3.2.3 Special Vectorsp. 26
3.2.4 Multiplication of Vectors and Scalarsp. 26
3.2.5 Vector Additionp. 26
3.2.6 Addition of Perpendicular Vectorsp. 28
3.2.7 Use of Index and Summation Notationsp. 31
3.3 Vector Algebra: Multiplication of Vectorsp. 32
3.3.1 Angle between Vectorsp. 32
3.3.2 Scalar Productp. 32
3.3.3 Vector Productp. 34
3.3.4 Dyadic Productp. 36
3.4 Dyadicsp. 37
3.4.1 Zero Dyadicp. 37
3.4.2 Identity Dyadicp. 37
3.4.3 Dyadic Transposep. 38
3.4.4 Symmetric Dyadicsp. 38
3.4.5 Multiplication of Dyadicsp. 38
3.4.6 Inverse Dyadicsp. 39
3.4.7 Orthogonal Dyadicsp. 39
3.5 Multiple Products of Vectorsp. 39
3.5.1 Scalar Triple Productp. 39
3.5.2 Vector Triple Productp. 41
3.5.3 Dyadic/Vector Productp. 41
3.5.4 Other Multiple Productsp. 42
3.6 Matrices/Arraysp. 43
3.6.1 Zero Matricesp. 43
3.6.2 Identity Matricesp. 43
3.6.3 Matrix Transposep. 43
3.6.4 Equal Matricesp. 43
3.6.5 Symmetric Matricesp. 44
3.6.6 Skew-Symmetric Matricesp. 44
3.6.7 Diagonal Matrixp. 44
3.6.8 Matrix Measuresp. 44
3.6.9 Singular Matricesp. 44
3.6.10 Multiplication of Matrices by Scalarsp. 44
3.6.11 Addition of Matricesp. 44
3.6.12 Multiplication of Matricesp. 45
3.6.13 Inverse Matricesp. 45
3.6.14 Orthogonal Matricesp. 46
3.6.15 Submatricesp. 46
3.6.16 Rankp. 46
3.6.17 Partitioning of Matrices, Block Multiplicationp. 46
3.6.18 Pseudoinversep. 46
3.7 Determinantsp. 47
3.8 Relationship of 3 × 3 Determinants, Permutation Symbols, and Kronecker Delta Functionsp. 49
3.9 Eigenvalues, Eigenvectors, and Principal Directionsp. 52
3.10 Maximum and Minimum Eigenvalues and the Associated Eigenvectorsp. 57
3.11 Use of MATLAB®p. 58
3.12 Elementary MATLAB® Operations and Functionsp. 62
3.12.1 Elementary Operationsp. 62
3.12.2 Elementary Functionsp. 63
Problemsp. 64
Referencesp. 74
Chapter 4 Methods of Analysis II: Forces and Force Systemsp. 77
4.1 Forces: Vector Representationsp. 77
4.2 Moments of Forcesp. 77
4.3 Moments of Forces about Linesp. 78
4.4 Systems of Forcesp. 79
4.5 Special Force Systemsp. 81
4.5.1 Zero Force Systemsp. 81
4.5.2 Couplesp. 81
4.5.3 Equivalent Force Systemsp. 82
4.5.4 Superimposed and Negative Force Systemsp. 84
4.6 Principle of Action-Reactionp. 84
Problemsp. 85
Referencesp. 91
Chapter 5 Methods of Analysis III: Mechanics of Materialsp. 93
5.1 Concepts of Stressp. 93
5.2 Concepts of Strainp. 97
5.3 Principal Values of Stress and Strainp. 102
5.4 Two-Dimensional Example: Mohr's Circlep. 103
5.5 Elementary Stress-Strain Relationsp. 107
5.6 General Stress-Strain (Constitutive) Relationsp. 110
5.7 Equations of Equilibrium and Compatibilityp. 112
5.8 Use of Curvilinear Coordinatesp. 114
5.8.1 Cylindrical Coordinatesp. 114
5.8.2 Spherical Coordinatesp. 116
5.9 Review of Elementary Beam Theoryp. 117
5.9.1 Sign Conventionp. 118
5.9.2 Equilibrium Considerationp. 119
5.9.3 Strain-Curvature Relationsp. 119
5.9.4 Stress-Bending Moment Relationsp. 121
5.9.5 Summary of Governing Equationsp. 122
5.10 Thick Beamsp. 123
5.11 Curved Beamsp. 125
5.12 Singularity Functionsp. 126
5.13 Elementary Illustrative Examplesp. 128
5.13.1 Cantilever Beam with a Concentrated End Loadp. 128
5.13.2 Cantilever Beam with a Concentrated End Load on the Right Endp. 130
5.13.3 Simply Supported Beam with a Concentrated Interior Span Loadp. 134
5.13.4 Simply Supported Beam with Uniform Loadp. 136
5.14 Listing of Selected Beam Displacement and Bending Moment Resultsp. 139
5.15 Magnitude of Transverse Shear Stressp. 140
5.16 Torsion of Barsp. 140
5.17 Torsion of Members with Noncircular and Thin-Walled Cross Sectionsp. 142
5.18 Energy Methodsp. 144
Problemsp. 149
Referencesp. 159
Chapter 6 Methods of Analysis IV: Modeling of Biosystemsp. 161
6.1 Multibody (Lumped Mass) Systemsp. 161
6.2 Lower-Body Arraysp. 161
6.3 Whole-Body, Head/Neck, and Hand Modelsp. 166
6.4 Gross-Motion Modeling of Flexible Systemsp. 169
Problemsp. 170
Referencesp. 172
Chapter 7 Tissue Biomechanicsp. 173
7.1 Hard and Soft Tissuep. 173
7.2 Bonesp. 173
7.3 Bone Cells and Microstxucturep. 174
7.4 Physical Properties of Bonep. 175
7.5 Bone Development (Wolff's Law)p. 175
7.6 Bone Failure (Fracture and Osteoporosis)p. 176
7.7 Muscle Tissuep. 176
7.8 Cartilagep. 177
7.9 Ligaments/Tendonsp. 178
7.10 Scalp, Skull, and Brain Tissuep. 179
7.11 Skin Tissuep. 180
Problemsp. 180
Referencesp. 182
Chapter 8 Kinematical Preliminaries: Fundamental Equationsp. 183
8.1 Points, Particles, and Bodiesp. 183
8.2 Particle, Position, and Reference Framesp. 183
8.3 Particle Velocityp. 184
8.4 Particle Accelerationp. 185
8.5 Absolute and Relative Velocity and Accelerationp. 186
8.6 Vector Differentiation, Angular Velocityp. 188
8.7 Two Useful Kinematic Proceduresp. 192
8.7.1 Differentiation in Different Reference Framesp. 192
8.7.2 Addition Theorem for Angular Velocityp. 194
8.8 Configuration Graphsp. 196
8.9 Use of Configuration Graphs to Determine Angular Velocityp. 206
8.10 Application with Biosystemsp. 208
8.11 Angular Accelerationp. 211
8.12 Transformation Matrix Derivativesp. 213
8.13 Relative Velocity and Acceleration of Two Points Fixed on a Bodyp. 214
8.14 Singularities Occurring with Angular Velocity Components and Orientation Anglesp. 215
8.15 Rotation Dyadicsp. 217
8.16 Euler Parametersp. 221
8.17 Euler Parameters and Angular Velocityp. 223
8.18 Inverse Relations between Angular Velocity and Euler Parametersp. 226
8.19 Numerical Integration of Governing Dynamical Equationsp. 228
Problemsp. 228
Referencesp. 240
Chapter 9 Kinematic Preliminaries: Inertia Force Considerationsp. 241
9.1 Applied Forces and Inertia Forcesp. 241
9.2 Mass Centerp. 243
9.3 Equivalent Inertia Force Systemsp. 247
Problemsp. 249
Chapter 10 Human Body Inertia Propertiesp. 255
10.1 Second Moment Vectors, Moments, and Products of Inertiap. 255
10.2 Inertia Dyadicsp. 258
10.3 Sets of Particlesp. 260
10.4 Body Segmentsp. 261
10.5 Parallel Axis Theoremp. 263
10.6 Eigenvalues of Inertia: Principal Directionsp. 265
10.7 Eigenvalues of Inertia: Symmetrical Bodiesp. 268
10.8 Application with Human Body Modelsp. 270
Problemsp. 283
Referencesp. 285
Chapter 11 Kinematics of Human Body Modelsp. 287
11.1 Notation, Degrees of Freedom, and Coordinatesp. 287
11.2 Angular Velocitiesp. 290
11.3 Generalized Coordinatesp. 294
11.4 Partial Angular Velocitiesp. 295
11.5 Transformation Matrices: Recursive Formulationp. 297
11.6 Generalized Speedsp. 300
11.7 Angular Velocities and Generalized Speedsp. 302
11.8 Angular Accelerationp. 304
11.9 Mass Center Positionsp. 307
11.10 Mass Center Velocitiesp. 312
11.11 Mass Center Accelerationsp. 314
11.12 Summary: Human Body Model Kinematicsp. 315
Problemsp. 316
Referencesp. 318
Chapter 12 Kinetics of Human Body Modelsp. 319
12.1 Applied (Active) and Inertia (Passive) Forcesp. 319
12.2 Generalized Forcesp. 320
12.3 Generalized Applied (Active) Forces on a Human Body Modelp. 323
12.4 Forces Exerted across Articulating Jointsp. 323
12.4.1 Contact Forces across Jointsp. 323
12.4.2 Ligament and Tendon Forcesp. 325
12.4.3 Joint Articulation Momentsp. 326
12.5 Contribution of Gravity (Weight) Forces to the Generalized Active Forcesp. 328
12.6 Generalized Inertia Forcesp. 329
Problemsp. 331
Referencesp. 331
Chapter 13 Dynamics of Human Body Modelsp. 333
13.1 Kane's Equationsp. 333
13.2 Generalized Forces for a Human Body Modelp. 333
13.3 Dynamical Equationsp. 334
13.4 Formulation for Numerical Solutionsp. 335
13.5 Constraint Equationsp. 338
13.6 Constraint Forcesp. 339
13.7 Constrained System Dynamicsp. 342
13.8 Determination of Orthogonal Complement Arraysp. 344
13.9 Summaryp. 344
Problemsp. 346
Referencesp. 348
Chapter 14 Numerical Methodsp. 349
14.1 Governing Equationsp. 349
14.2 Numerical Development of the Governing Equationsp. 350
14.3 Outline of Numerical Proceduresp. 351
14.4 Algorithm Accuracy and Efficiencyp. 352
Problemsp. 354
Referencep. 354
Chapter 15 Simulations and Applicationsp. 355
15.1 Review of Human Modeling for Dynamic Simulationp. 355
15.2 Human Body in Free Space: A "Spacewalk"p. 356
15.2.1 X-Axis (Yaw) Rotationp. 357
15.2.2 Y-Axis (Pitch) Rotationp. 358
15.2.3 Z-Axis (Roll) Rotationp. 358
15.3 Simple Weight Liftp. 358
15.4 Walkingp. 361
15.4.1 Terminologyp. 362
15.4.2 Modeling/Simulationp. 362
15.4.3 Resultsp. 362
15.5 Swimmingp. 362
15.5.1 Modeling the Water Forcesp. 363
15.5.2 Limb Motion Specificationp. 364
15.5.3 Kick Strokesp. 364
15.5.4 Breaststrokep. 365
15.5.5 Commentsp. 366
15.6 Crash-Victim Simulation I: Modelingp. 366
15.7 Crash-Victim Simulation II: Vehicle Environment Modelingp. 367
15.8 Crash-Victim Simulation III: Numerical Analysisp. 368
15.9 Burden Bearing: Waiter/Tray Simulationsp. 369
15.9.1 Heavy Hanging Cablep. 369
15.9.2 Uniform Muscle Stress Criterionp. 371
15.9.3 Waitron/Tray Analysisp. 372
15.10 Other Applicationsp. 375
15.10.1 Load Sharing between Muscle Groupsp. 375
15.10.2 Transition Movementsp. 375
15.10.3 Gyroscopic Effects in Walkingp. 376
15.10.4 Neck Injuries in Rollover Motor Vehicle Accidentsp. 376
Problemsp. 376
Referencesp. 378
Appendix: Anthropometric Data Tablesp. 381
Glossaryp. 439
Bibliographyp. 447
Indexp. 449