Cover image for Micro and nano manipulations for biomedical applications
Title:
Micro and nano manipulations for biomedical applications
Publication Information:
Boston, MA : Artech House, 2008
Physical Description:
xiv, 295 p. : ill. ; 26 cm.
ISBN:
9781596932548

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010173153 R857.N34 M52 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Explains the synthesis and use of metal nanoparticles in bio-sensing and drug delivery applications. This work details various micro and nano manipulation tools and techniques, including manipulators and endoscopes for microsurgery, in-vitro and in-vivo imaging diagnostics, and optical nano-surgery of subcellular components.


Table of Contents

Prefacep. xiii
Chapter 1 Introductionp. 1
1.1 The Third Industrial Revolution?p. 1
1.1.1 The First Industrial Revolution-Manufacturing and Transportationp. 1
1.1.2 The Second Industrial Revolution-Computer and Communicationp. 3
1.1.3 The Third Industrial Revolution-Health and Environment?p. 5
1.2 Microtechnologies and Nanotechnologiesp. 6
1.2.1 Challenges and Opportunities in Nanotechnologyp. 7
1.2.2 Micromanipulations and Nanomanipulationsp. 9
1.3 Applications and Trendsp. 9
1.3.1 Biomedical Science and Engineeringp. 9
1.3.2 Health Care and Environmental Applicationsp. 10
Referencesp. 10
Chapter 2 Nanotechnology Applications in Cancer Imaging and Therapyp. 13
2.1 Introductionp. 13
2.2 Nanotechnology Approaches for In Vivo Diagnosticsp. 15
2.2.1 Molecular Imaging Approaches for In Vivo Diagnosticsp. 16
2.2.2 Nanotechnology-Based Contrast Agents for In Vivo Imagingp. 18
2.3 Nanotechnology-Based Drug Delivery Systems for Cancer Therapyp. 24
2.3.1 Fundamental Requirements for Drug Delivery Systemsp. 25
2.3.2 Cancer Therapy Approaches Using Nanotechnologiesp. 30
2.4 Conclusionsp. 36
Referencesp. 37
Chapter 3 Nanoparticles for Biomedical Applicationsp. 43
3.1 Introductionp. 43
3.2 Synthesis of Metallic Nanoparticlesp. 45
3.2.1 Synthesis Approaches to Noble Metal Nanoparticlesp. 45
3.2.2 Synthesis of Magnetic Metal Nanoparticlesp. 49
3.3 Novel Properties of Metal Nanoparticlesp. 57
3.3.1 Unique Properties of Noble Metal Nanoparticlesp. 57
3.3.2 Magnetic Properties of Metallic Nanoparticlesp. 67
3.4 Application of Metal Nanoparticles in Biomedicinep. 71
3.4.1 Biomedical Detection Using Novel Metal Nanoparticlesp. 71
3.4.2 Drug Delivery and Biosensing with Magnetic Nanoparticlesp. 78
3.5 Specific Properties of Quantum Dotsp. 83
3.6 Quantum Dots as Fluorescent Biological Labelsp. 86
3.6.1 Disadvantages of Organic Dyes, Traditional Biological Labelsp. 86
3.6.2 Beneficial Quantum Dot Optical and Spectral Propertiesp. 87
3.7 Quantum Dots in Biomedical Applicationsp. 88
Referencesp. 91
Chapter 4 Microactuators for In Vivo Imaging and Micromanipulators in Minimally Invasive Proceduresp. 101
4.1 Minimally Invasive Procedure Applicationsp. 101
4.2 Endoscopic and In Vivo Imaging Applicationsp. 102
4.2.1 In Vivo Scanning Microscopep. 103
4.2.2 In Vivo Optical Coherent Tomography Imagingp. 104
4.3 Micromanipulators for Minimally Invasive Proceduresp. 108
4.3.1 Microtoolsp. 109
4.3.2 Sensors in Micromanipulatorsp. 111
4.3.3 Navigationp. 112
4.5 Conclusionsp. 113
Referencesp. 114
Chapter 5 Microactuatorsp. 119
5.1 Introductionp. 119
5.2 Electrostatic Actuatorsp. 119
5.3 Thermal Actuatorsp. 122
5.4 Piezoelectric Actuatorsp. 126
5.5 Shape Memory Alloy Actuatorsp. 128
5.6 Magnetic Actuatorsp. 132
5.7 Conclusionsp. 135
Referencesp. 135
Chapter 6 Optical Nanomanipulation in a Living Cellp. 143
6.1 Two-Photon Fluorescence Microscopyp. 143
6.1.1 Introductionp. 143
6.1.2 A Brief Analytical Descriptionp. 145
6.2 Second-Harmonic-Generation Microscopyp. 146
6.2.1 Introductionp. 146
6.2.2 Nonlinear Optical Processesp. 147
6.2.3 Single-Molecule Cross Sectionp. 148
6.2.4 Biological Membrane Imagingp. 149
6.3 Laser-Induced Microdissectionp. 151
6.3.1 Summaryp. 151
6.3.2 Introduction to Optical Dissectionp. 151
6.3.3 Three-Dimensional Imaging and Optical Dissection by Nonlinear Optical Microscopyp. 151
6.3.4 Physical Characterization of Nanosurgeryp. 153
6.3.5 Mitotic Spindle Positioningp. 154
6.3.6 Mitotic Spindle Elongationp. 156
6.4 Optical Trappingp. 157
6.4.1 Summaryp. 157
6.4.2 Introduction to Optical Tweezersp. 157
6.4.3 Optical Trapping Inside Yeast Cellsp. 158
6.4.4 Laser-Induced Nucleus Displacementp. 162
6.4.5 Motion of a Displaced Interphase Nucleus Back to the Cell Center by Microtubule Pushingp. 163
6.4.6 Asymmetric Cell Division as a Result of Nucleus Displacement During Interphasep. 164
6.4.7 Division Plane Determination in Early Prophasep. 165
6.5 Optical Knockoutp. 166
6.5.1 Introductionp. 166
6.5.2 One-Photon CALIp. 167
6.5.3 Micro-CALIp. 168
6.5.4 Multiphoton CALIp. 171
6.6 Conclusionsp. 172
Acknowledgmentsp. 173
Referencesp. 173
Chapter 7 Dielectrophoretic Methods for Biomedical Applicationsp. 179
7.1 Introductionp. 179
7.2 Theoryp. 181
7.2.1 Dielectrophoresisp. 181
7.2.2 Dielectric Properties of Bioparticles and Biomoleculesp. 185
7.3 Dielectrophoretic Approaches to Bioparticle Manipulation and Characterizationp. 191
7.3.1 Differential Manipulation of Bioparticlesp. 191
7.3.2 Filtration and Concentration of Bioparticlesp. 193
7.3.3 Manipulating Cells for Subsequent Analysisp. 195
7.3.4 Cell Patterning and Tissue Engineeringp. 198
7.3.5 Characterizing Cell Physiology by Dielectrophoresisp. 200
7.4 Dielectrophoretic Approaches to Molecular Assaysp. 202
7.4.1 Microparticle-Based Systemsp. 202
7.4.2 Droplet-Based Systems: Digital Microfluidicsp. 203
7.5 Conclusions and Perspectivesp. 204
Acknowledgmentsp. 205
Referencesp. 205
Chapter 8 Design, Analysis, Modeling, Simulation, and Control of Microscale and Nanoscale Cell Manipulationsp. 215
8.1 Introductionp. 215
8.1.1 Overview of Micropositioning and Nanopositioning Systems Based on Piezoactuatorsp. 216
8.1.2 Applications of Piezoactuated Micropositioning and Nanopositioning Systemsp. 217
8.2 Construction of the Micro-Nano Robot as a Mechatronic Systemp. 218
8.2.1 Conceptual Design of Piezo-Actuated Microrobot Developmentp. 218
8.2.2 Robot RoTeMiNa for Cell Micromanipulation and Nanomanipulationp. 221
8.2.3 Design of the Micro Stage Robotp. 222
8.2.4 Design of the Nano Stage Robotp. 223
8.2.5 Teleoperated Controlp. 223
8.3 Differential Kinematics of a Hybrid Robot for Cell Micromanipulations and Nanomanipulationsp. 225
8.3.1 Link and Joint Numberingp. 225
8.3.2 Oriented Graph Attached to the Mechanismp. 225
8.3.3 Matrix Description of Graphp. 226
8.3.4 Geometric Jacobeanp. 227
8.3.5 Degrees of Freedomp. 232
8.3.6 Independent Equations for the Inverse Kinematicsp. 232
8.4 Hardware and Software for the Development of Micropositioning and Nanopositioning Systemsp. 234
8.4.1 Guidelines for Developmentp. 234
8.4.2 Sensors for Feedbackp. 235
8.4.3 Unified Approach for Functional Task Formulationp. 235
8.5 Intelligent Control of Piezoactuated Robot Using an Approximated Hysteresis Model in Micromanipulations and Nanomanipulationsp. 238
8.5.1 Introductionp. 238
8.5.2 The Mathematical Model of Hysteresisp. 238
8.5.3 The Neuro-Fuzzy Inverse Modelp. 241
8.5.4 The Control System Structurep. 242
8.5.5 Multiobjective Optimal PI/PID Controller Design Using Genetic Algorithmsp. 244
8.6 Experimental Resultsp. 246
8.7 Extension of the Method and Limitationsp. 247
8.8 Discussion and Conclusionsp. 247
Acknowledgments 250
References 250
Chapter 9 Dynamics Modeling and Analysis for Gene Manipulationsp. 253
9.1 Introductionp. 253
9.1.1 Current Statusp. 254
9.1.2 Requirements for Gene Deliveryp. 254
9.1.3 Methods for Gene Deliveryp. 256
9.2 Electroporationp. 257
9.2.1 Electrodep. 258
9.2.2 Electric Pulsep. 259
9.2.3 Tissue Damagep. 260
9.2.4 Gene Expression Efficiencyp. 260
9.2.5 Dynamics Modelingp. 261
9.3 Hydroporationp. 261
9.4 Sonoporationp. 262
9.4.1 Impact of Ultrasound Frequencyp. 263
9.4.2 Impact of Ultrasound Intensityp. 263
9.4.3 Impact of Ultrasound Exposure Timep. 264
9.4.4 Cell Damage with Sonoporationp. 264
9.4.5 Dynamic Modelingp. 264
9.5 Microneedle and Microinjectionp. 266
9.5.1 Microneedlep. 266
9.5.2 Microinjectionp. 266
9.6 Optoinjection and Optoporationp. 267
9.7 Magnetofectionp. 268
9.8 Gene Gunp. 269
9.8.1 Introductionp. 269
9.8.2 Dynamic Modelingp. 272
9.9 Summary and Comparison of the Physical Methodsp. 275
9.10 Summary and Future Challengesp. 275
Referencesp. 277
About the Authorsp. 281
Indexp. 277