Cover image for Process modeling in composites manufacturing
Title:
Process modeling in composites manufacturing
Personal Author:
Series:
Manufacturing engineering and materials processing ; 59
Publication Information:
New York : Marcel Dekker, 2003
ISBN:
9780824708603
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010058889 TA418.9.C6 A384 2003 Open Access Book Book
Searching...
Searching...
30000010076528 TA418.9.C6 A384 2003 Unknown 1:CHECKING
Searching...
Searching...
30000010077056 TA418.9.C6 A384 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Editionprovides tangible methods to optimize this process -- and it remains a proven, powerful introduction to the basic principles of fluid mechanics and heat transfer.

Includes tools to develop an experience base to aid in modeling a composite manufacturing process

Building on past developments, this new book updates the previous edition's coverage of process physics and the state of modeling in the field. Exploring research derived from experience, intuition, and trial and error, the authors illustrate a state-of-the-art understanding of mass, momentum, and energy transfer during composites processing. They introduce computer-based solutions using MATLABĀ® code and flow simulation-based analysis, which complement closed-form solutions discussed in the book, to help readers understand the role of different material, geometric, and process parameters.

This self-contained primer provides an introduction to modeling of composite manufacturing processes for anyone working in material science and engineering, industrial, mechanical, and chemical engineering. It introduces a scientific basis for manufacturing, using solved example problems which employ calculations provided in the book. End-of-chapter questions and problems and fill in the blanks sections reinforce the content in order to develop the experience base of the manufacturing, materials, and design engineer or scientists, as well as seniors and first-year graduate students.


Author Notes

Suresh G. Advani is Associate Director, Center for Composite Materials, and Professor of Mechanical Engineering, University of Delaware, Newark
E. Murat Sozer is Assistant Professor of Mechanical Engineering, Koc University, Istanbul, Turkey


Table of Contents

Prefacep. iii
1 Introductionp. 1
1.1 Motivation and Contentsp. 1
1.2 Preliminariesp. 2
1.3 Polymer Matrices for Compositesp. 4
1.3.1 Polymer Resinsp. 7
1.3.2 Comparison Between Thermoplastic and Thermoset Polymersp. 9
1.3.3 Additives and Inert Fillersp. 11
1.4 Fibersp. 11
1.4.1 Fiber-Matrix Interfacep. 12
1.5 Classificationp. 13
1.5.1 Short Fiber Compositesp. 13
1.5.2 Advanced Compositesp. 15
1.6 General Approach to Modelingp. 16
1.7 Organization of the Bookp. 18
1.8 Exercisesp. 18
1.8.1 Questionsp. 18
1.8.2 Fill in the Blanksp. 19
2 Overview of Manufacturing Processesp. 23
2.1 Backgroundp. 23
2.2 Classification Based on Dominant Flow Processp. 24
2.3 Short Fiber Suspension Manufacturing Methodsp. 25
2.3.1 Injection Moldingp. 25
2.3.2 Extrusionp. 32
2.3.3 Compression Moldingp. 34
2.4 Advanced Thermoplastic Manufacturing Methodsp. 37
2.4.1 Sheet Formingp. 38
2.4.2 Thermoplastic Pultrusionp. 41
2.4.3 Thermoplastic Tape Lay-Up Processp. 44
2.5 Advanced Thermoset Composite Manufacturing Methodsp. 46
2.5.1 Autoclave Processingp. 46
2.5.2 Liquid Composite Moldingp. 49
2.5.3 Filament Windingp. 52
2.6 Exercisesp. 54
2.6.1 Questionsp. 54
2.6.2 Fill in the Blanksp. 58
3 Transport Equations for Composite Processingp. 63
3.1 Introduction to Process Modelsp. 63
3.2 Conservation of Mass (Continuity Equation)p. 64
3.2.1 Conservation of Massp. 65
3.2.2 Mass Conservation for Resin with Presence of Fiberp. 69
3.3 Conservation of Momentum (Equation of Motion)p. 70
3.4 Stress-Strain Rate Relationshipp. 75
3.4.1 Kinematics of Fluidp. 75
3.4.2 Newtonian Fluidsp. 80
3.5 Examples on Use of Conservation Equations to Solve Viscous Flow Problemsp. 84
3.5.1 Boundary Conditionsp. 84
3.5.2 Solution Procedurep. 87
3.6 Conservation of Energyp. 95
3.6.1 Heat Flux-Temperature Gradient Relationshipp. 101
3.6.2 Thermal Boundary Conditionsp. 103
3.7 Exercisesp. 107
3.7.1 Questionsp. 107
3.7.2 Problemsp. 108
4 Constitutive Laws and Their Characterizationp. 111
4.1 Introductionp. 111
4.2 Resin Viscosityp. 112
4.2.1 Shear Rate Dependencep. 114
4.2.2 Temperature and Cure Dependencep. 118
4.3 Viscosity of Aligned Fiber Thermoplastic Laminatesp. 121
4.4 Suspension Viscosityp. 129
4.4.1 Regimes of Fiber Suspensionp. 129
4.4.2 Constitutive Equationsp. 136
4.5 Reaction Kineticsp. 137
4.5.1 Techniques to Monitor Cure: Macroscopic Characterizationp. 141
4.5.2 Technique to Monitor Cure: Microscopic Characterizationp. 143
4.5.3 Effect of Reinforcements on Cure Kineticsp. 144
4.6 Crystallization Kineticsp. 146
4.6.1 Introductionp. 146
4.6.2 Solidification and Crystallizationp. 146
4.6.3 Backgroundp. 147
4.6.4 Crystalline Structurep. 148
4.6.5 Spherulitic Growthp. 149
4.6.6 Macroscopic Crystallizationp. 150
4.7 Permeabilityp. 151
4.7.1 Permeability and Preform Parametersp. 155
4.7.2 Analytic and Numerical Characterization of Permeabilityp. 156
4.7.3 Experimental Characterization of Permeabilityp. 157
4.8 Fiber Stressp. 161
4.9 Exercisesp. 164
4.9.1 Questionsp. 164
4.9.2 Fill in the Blanksp. 167
4.9.3 Problemsp. 169
5 Model Simplifications and Solutionp. 173
5.1 Introductionp. 173
5.1.1 Usefulness of Modelsp. 174
5.2 Formulation of Modelsp. 175
5.2.1 Problem Definitionp. 175
5.2.2 Building the Mathematical Modelp. 177
5.2.3 Solution of the Equationsp. 177
5.2.4 Model Assessmentp. 178
5.2.5 Revisions of the Modelp. 179
5.3 Model and Geometry Simplificationsp. 180
5.4 Dimensionless Analysis and Dimensionless Numbersp. 183
5.4.1 Dimensionless Numbers Used in Composites Processingp. 190
5.5 Customary Assumptions in Polymer Composite Processingp. 198
5.5.1 Quasi-Steady Statep. 198
5.5.2 Fully Developed Region and Entrance Effectsp. 199
5.5.3 Lubrication Approximationp. 200
5.5.4 Thin Shell Approximationp. 201
5.6 Boundary Conditions for Flow Analysisp. 201
5.6.1 In Contact with the Solid Surfacep. 201
5.6.2 In Contact with Other Fluid Surfacesp. 202
5.6.3 Free Surfacesp. 202
5.6.4 No Flow out of the Solid Surfacep. 202
5.6.5 Specified Conditionsp. 203
5.6.6 Periodic Boundary Conditionp. 203
5.6.7 Temperature Boundary Conditionsp. 203
5.7 Convection of Variablesp. 205
5.8 Process Models from Simplified Geometriesp. 206
5.8.1 Model Construction Based on Simple Geometriesp. 209
5.9 Mathematical Tools for Simplificationp. 211
5.9.1 Transformation of Coordinatesp. 211
5.9.2 Superpositionp. 213
5.9.3 Decoupling of Equationsp. 215
5.10 Solution Methodsp. 216
5.10.1 Closed Form Solutionsp. 217
5.11 Numerical Methodsp. 219
5.12 Validationp. 221
5.12.1 Various Approaches for Validationp. 221
5.13 Exercisesp. 223
5.13.1 Questionsp. 223
5.13.2 Problemsp. 225
6 Short Fiber Compositesp. 227
6.1 Introductionp. 227
6.2 Compression Moldingp. 229
6.2.1 Basic Processing Steps [1]p. 229
6.2.2 Applications [1]p. 230
6.2.3 Flow Modelingp. 231
6.2.4 Thin Cavity Modelsp. 231
6.2.5 Hele-Shaw Modelp. 234
6.2.6 Lubricated Squeeze Flow Modelp. 238
6.2.7 Hele-Shaw Model with a Partial Slip Boundary Condition [2]p. 243
6.2.8 Heat Transfer and Curep. 248
6.2.9 Curep. 251
6.2.10 Coupling of Heat Transfer with Curep. 252
6.2.11 Fiber Orientationp. 254
6.3 Extrusionp. 255
6.3.1 Flow Modelingp. 257
6.3.2 Calculation of Power Requirements [3]p. 260
6.3.3 Variable Channel Length [3]p. 262
6.3.4 Newtonian Adiabatic Analysis [3]p. 263
6.4 Injection Moldingp. 265
6.4.1 Process Descriptionp. 265
6.4.2 Materialsp. 267
6.4.3 Applicationsp. 267
6.4.4 Critical Issuesp. 268
6.4.5 Model Formulation for Injection Moldingp. 269
6.4.6 Fiber Orientationp. 280
6.5 Exercisesp. 285
6.5.1 Questionsp. 285
6.5.2 Fill in the Blanksp. 287
6.5.3 Problemsp. 289
7 Advanced Thermoplastic Composite Manufacturing Processesp. 291
7.1 Introductionp. 291
7.2 Composite Sheet Forming Processesp. 292
7.2.1 Diaphragm Formingp. 293
7.2.2 Matched Die Formingp. 293
7.2.3 Stretch and Roll Formingp. 295
7.2.4 Deformation Mechanismsp. 296
7.3 Pultrusionp. 299
7.3.1 Thermoset Versus Thermoplastics Pultrusionp. 300
7.3.2 Cell Model [4]p. 300
7.4 Thermal Modelp. 308
7.4.1 Transient Heat Transfer Equationp. 308
7.4.2 Viscous Dissipationp. 310
7.5 On-line Consolidation of Thermoplasticsp. 311
7.5.1 Introduction to Consolidation Modelp. 314
7.5.2 Importance of Process Modelingp. 314
7.5.3 Consolidation Process Modelp. 316
7.5.4 Model Assumptions and Simplificationsp. 316
7.5.5 Governing Equationsp. 317
7.5.6 Boundary Conditionsp. 322
7.5.7 Rheology of the Compositep. 323
7.5.8 Model Solutionsp. 324
7.5.9 Inverse Problem of Force Controlp. 331
7.5.10 Extended Consolidation Modelp. 331
7.6 Exercisesp. 333
7.6.1 Questionsp. 333
7.6.2 Fill in the Blanksp. 334
7.6.3 Problemsp. 337
8 Processing Advanced Thermoset Fiber Compositesp. 339
8.1 Introductionp. 339
8.2 Autoclave Moldingp. 340
8.2.1 Part Preparationp. 341
8.2.2 Material and Process Parametersp. 341
8.2.3 Processing Stepsp. 348
8.2.4 Critical Issuesp. 348
8.2.5 Flow Model for Autoclave Processingp. 349
8.3 Liquid Composite Moldingp. 356
8.3.1 Similarities and Differences Between Various LCM Processesp. 356
8.3.2 Important Components of LCM Processesp. 361
8.3.3 Modeling the Process Issues in LCMp. 367
8.3.4 Process Modelsp. 375
8.3.5 Resin Flowp. 376
8.3.6 Heat Transfer and Curep. 382
8.3.7 Numerical Simulation of Resin Flow in LCM Processesp. 390
8.4 Filament Winding of Thermosetting Matrix Compositesp. 393
8.4.1 Introductionp. 393
8.4.2 Process Modelsp. 395
8.5 Summary and Outlookp. 402
8.6 Exercisesp. 403
8.6.1 Questionsp. 403
8.6.2 Fill in the Blanksp. 405
8.6.3 Problemsp. 407
Bibliographyp. 409
Indexp. 433