Cover image for An introduction to the physics of interstellar dust
Title:
An introduction to the physics of interstellar dust
Personal Author:
Publication Information:
Boca Raton, FL : Taylor & Francis, 2008
Physical Description:
xiii, 387 p. : ill. ; 25 cm.
ISBN:
9781584887072

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010169795 QB791 K78 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Streamlining the extensive information from the original, highly acclaimed monograph, this new An Introduction to the Physics of Interstellar Dust provides a concise reference and overview of interstellar dust and the interstellar medium. Drawn from a graduate course taught by the author, a highly regarded figure in the field, this all-in-one book emphasizes astronomical formulae and astronomical problems to give a solid foundation for the further study of interstellar medium.

Covering all phenomena associated with cosmic dust, this inclusive text eliminates the need to consult special physical literature by providing a comprehensive introduction in one source. The book addresses the absorption and scattering of dust, its creation in old stars, as well as emission, cohesion, and electrical charge. With strong attention to detail, the author facilitates a complete understanding from which to build a more versatile application and manipulation of the information. Providing insightful explanations for the utilization of many formulae, the author instructs in the effective investigation of astronomical objects for determining basic parameters. The book offers numerous figures displaying basic properties of dust such as optical constants, specific heat, and absorption and scattering coefficients making it accessible for the reader to apply these numbers to the problem at hand. There is an extensive section and comprehensive introduction to radiative transfer in a dusty medium with many practical pieces of advice and ample illustrations to guide astronomers wishing to implement radiative transfer code themselves.

An unparalleled amount of astronomical information in an accessible and palatable resource, An Introduction to the Physics of Interstellar Dust provides the most complete foundational reference available on the subject.


Author Notes

Krugel, Endrik


Table of Contents

1 The dielectric permeabilityp. 1
1.1 How the electromagnetic field acts on dustp. 1
1.1.1 Electric field and magnetic inductionp. 1
1.1.2 Electric polarization of the mediump. 2
1.1.3 Magnetic polarization of the mediump. 6
1.1.4 Free charges and polarization chargesp. 7
1.1.5 The field equationsp. 9
1.1.6 Waves in a dielectric mediump. 9
1.1.7 Energy dissipation of a grain in a variable fieldp. 12
1.2 The harmonic oscillatorp. 13
1.2.1 The Lorentz modelp. 14
1.2.2 Dissipation of energyp. 17
1.2.3 Dispersion relation of the dielectric permeabilityp. 18
1.2.4 The harmonic oscillator and lightp. 20
1.2.5 Radiation dampingp. 23
1.2.6 The cross section of an harmonic oscillatorp. 24
1.3 Waves in a conducting mediump. 25
1.3.1 The dielectric permeability of a conductorp. 25
1.3.2 Conductivity and the Drude profilep. 27
2 How to evaluate grain cross sectionsp. 29
2.1 Defining cross sectionsp. 29
2.1.1 Cross section for scattering, absorption and extinctionp. 29
2.1.2 Phase function and cross section for radiation pressurep. 31
2.1.3 Efficiencies, mass and volume coefficientsp. 32
2.2 The optical theoremp. 32
2.2.1 The intensity of forward scattered lightp. 33
2.2.2 The refractive index of a dusty mediump. 35
2.3 Mie theory for a spherep. 37
2.3.1 The formalismp. 37
2.3.2 Scattered and absorbed powerp. 38
2.4 Polarization and scatteringp. 39
2.4.1 The amplitude scattering matrixp. 40
2.4.2 Angle-dependence of scatteringp. 41
2.4.3 The polarization ellipsep. 41
2.4.4 Stokes parametersp. 42
2.5 The discrete dipole approximationp. 45
2.6 The Kramers-Kronig relationsp. 47
2.6.1 The KK relation for the dielectric permeabilityp. 47
2.6.2 Three corollaries of the KK relationp. 47
2.7 Composite grainsp. 50
2.7.1 Effective medium theoriesp. 50
2.7.2 The influence of grain size, ice and porosityp. 54
3 Very small and very big particlesp. 59
3.1 Tiny spheresp. 59
3.1.1 Approximating the efficienciesp. 59
3.1.2 Polarization and angle-dependent scatteringp. 64
3.1.3 Small-size effects beyond Mie theoryp. 64
3.2 Tiny ellipsoidsp. 65
3.2.1 Cross section and shape factor of pancakes and cigarsp. 66
3.2.2 Randomly oriented ellipsoidsp. 67
3.3 The fields inside a dielectric particlep. 70
3.3.1 Internal field and depolarization fieldp. 70
3.3.2 Depolarization field and surface chargesp. 70
3.3.3 The local field at an atomp. 71
3.3.4 The relation of Clausius-Mossottip. 72
3.4 Very large particlesp. 73
3.4.1 Babinet's theoremp. 73
3.4.2 Reflection and transmission at a plane surfacep. 75
3.4.3 Huygens' principlep. 77
3.5 Grains of small refractive indexp. 80
3.5.1 Rayleigh Gans particlesp. 80
3.5.2 X-ray scatteringp. 81
3.5.3 X-ray absorptionp. 82
4 Case studies of Mie calculusp. 85
4.1 Efficiencies of bare spheresp. 85
4.1.1 Scattering and absorptionp. 85
4.1.2 Efficiency vs. cross section and volume coefficientp. 90
4.2 Scattering by bare spheresp. 92
4.2.1 The intensity pattern of scattered lightp. 92
4.2.2 The polarization of scattered lightp. 93
4.3 Linear polarization through extinctionp. 96
4.4 Coated spheresp. 97
4.5 Surface modes in small grainsp. 99
4.5.1 Small graphite spheresp. 99
4.5.2 Ellipsoids and metalsp. 100
5 Structure and composition of dustp. 101
5.1 Crystal structurep. 101
5.1.1 Translational symmetryp. 101
5.1.2 Lattice typesp. 102
5.1.3 The reciprocal latticep. 105
5.2 Binding in crystalsp. 107
5.2.1 Covalent and ionic bondingp. 107
5.2.2 Metalsp. 108
5.2.3 Van der Waals forces and hydrogen bridgesp. 110
5.3 Carbonaceous grains and silicate grainsp. 111
5.3.1 Origin of the two major dust constituentsp. 111
5.3.2 The bonding in carbonp. 112
5.3.3 Carbon compoundsp. 113
5.3.4 Silicatesp. 117
5.3.5 The origin of the elements found in dust grainsp. 120
5.4 Optical constants of dust materialsp. 121
5.5 Grain sizesp. 128
5.5.1 The MRN size distributionp. 128
5.5.2 Collisional fragmentationp. 129
6 Dust radiationp. 131
6.1 Kirchhoff's lawp. 131
6.1.1 The emissivity of dustp. 131
6.1.2 Thermal emission of grainsp. 132
6.1.3 Absorption and emission in thermal equilibriump. 133
6.2 The temperature of big grainsp. 134
6.2.1 The energy equationp. 134
6.2.2 Temperature estimatesp. 135
6.2.3 Relation between grain size and grain temperaturep. 137
6.2.4 Dust temperatures from observationsp. 138
6.3 The emission of big grainsp. 140
6.3.1 Constant temperature and low optical depthp. 140
6.3.2 Total emission and cooling rate of a grainp. 143
6.4 Calorific properties of solidsp. 143
6.4.1 Traveling waves in a crystalp. 145
6.4.2 Internal energy of a grainp. 148
6.4.3 The Debye temperaturep. 149
6.4.4 Specific heatp. 150
6.4.5 Two-dimensional latticesp. 151
6.5 Temperature fluctuations of very small grainsp. 152
6.5.1 The probability density P(T)p. 153
6.5.2 The transition matrixp. 153
6.5.3 The stochastic time evolution of grain temperaturep. 155
6.6 The emission spectrum of very small grainsp. 156
6.6.1 Moderate fluctuationsp. 156
6.6.2 Strong fluctuationsp. 158
6.6.3 Temperature fluctuations and flux ratiosp. 159
7 Dust and its environmentp. 161
7.1 Grain chargep. 161
7.1.1 Charge equilibrium in the absence of a UV fieldp. 161
7.1.2 The photoelectric effectp. 163
7.2 Grain motionp. 166
7.2.1 Random walkp. 167
7.2.2 The drag on a grain subjected to an outer forcep. 167
7.2.3 Brownian motion of a grainp. 170
7.3 Dust in the solar systemp. 172
7.3.1 Interplanetary dustp. 172
7.3.2 The Poynting-Robertson effectp. 173
7.3.3 Electromagnetic forces on grains: Dust from Iop. 174
7.3.4 Shooting stars and less belligerent meteoroidsp. 176
7.4 Grain destructionp. 181
7.4.1 Mass balance of gas and dust in the Milky Wayp. 181
7.4.2 Destruction processesp. 183
7.5 Grain formationp. 184
7.5.1 Evaporation temperature and vapor pressurep. 185
7.5.2 Vapor pressure of small grainsp. 187
7.5.3 Critical saturationp. 189
7.5.4 Time-dependent homogeneous nucleationp. 190
7.5.5 Steady-state nucleationp. 191
7.5.6 Solutions to time-dependent homogeneous nucleationp. 195
8 Grain surfacesp. 201
8.1 Gas accretion on grainsp. 201
8.1.1 Physical adsorption and chemisorptionp. 202
8.1.2 The sticking probabilityp. 205
8.2 Mobility of atoms on grain surfacesp. 206
8.2.1 Thermal hoppingp. 207
8.2.2 Evaporationp. 208
8.2.3 Tunnelingp. 208
8.2.4 Photodesorptionp. 209
8.3 Grain surface chemistryp. 210
8.3.1 Chemical reactions in the gasp. 210
8.3.2 Chemical reactions on dustp. 211
8.3.3 The formation of H[subscript 2] in diffuse cloudsp. 214
8.4 Ice mantlesp. 215
9 PAHs and spectral features of dustp. 219
9.1 Polycyclic Aromatic Hydrocarbonsp. 219
9.1.1 Microcanonic emission of PAHsp. 220
9.1.2 An example: anthracenep. 221
9.1.3 Photo-excitation of PAHsp. 224
9.1.4 Cutoff wavelength for electronic excitationp. 225
9.1.5 Photo-destruction and ionizationp. 226
9.1.6 Cross sections and line profiles of PAHsp. 227
9.2 ERE and DIBsp. 229
9.3 The silicate bands at 10[mu]m and 18[mu]mp. 230
9.3.1 The strength of the resonancesp. 230
9.3.2 How the bands change with temperature and grain sizep. 231
9.4 Crystalline silicatesp. 233
9.4.1 Where they are found and how they formp. 233
9.4.2 Thermal expansion of grainsp. 234
9.4.3 The frequency shift of a resonance in grain heatingp. 236
9.5 The feature at 3.4[mu]mp. 237
10 Interstellar reddening and dust modelsp. 239
10.1 Reddening by interstellar grainsp. 239
10.1.1 Stellar photometryp. 239
10.1.2 The interstellar extinction curvep. 241
10.1.3 Two-color-diagramsp. 245
10.1.4 Spectral indicesp. 246
10.1.5 The mass absorption coefficientp. 246
10.2 Dust modelsp. 249
10.2.1 Description of the model componentsp. 250
10.2.2 Extinction and scattering of the dust modelp. 252
10.2.3 Extinction and absorption mass coefficientsp. 254
11 Radiative transportp. 259
11.1 Basic transfer relationsp. 259
11.1.1 Definition of intensity, mean intensity and fluxp. 259
11.1.2 The general transfer equationp. 262
11.1.3 Transfer equation in spherical and slab symmetryp. 264
11.1.4 Frequency averagesp. 266
11.1.5 Analytical solutions to the transfer equationp. 267
11.2 Spherical cloudsp. 268
11.2.1 Integral equations for the intensityp. 269
11.2.2 Practical hintsp. 270
11.3 Passive disksp. 272
11.3.1 Radiative transfer in a plane parallel layerp. 272
11.3.2 Disks of high optical thicknessp. 274
11.3.3 The grazing anglep. 275
11.4 Galactic nucleip. 278
11.4.1 Hot spots in a spherical stellar clusterp. 278
11.4.2 Low and high luminosity starsp. 279
11.5 The pursuit of random photonsp. 281
11.5.1 The strategyp. 281
11.5.2 Grains with temperature fluctuationsp. 284
11.5.3 Anisotropic scatteringp. 286
11.5.4 Practical considerationsp. 287
12 Spectral energy distribution of dusty objectsp. 289
12.1 Early stages of star formationp. 289
12.1.1 Globulesp. 289
12.1.2 Isothermal gravitationally-bound clumpsp. 291
12.1.3 The density structure of a protostarp. 292
12.2 Accretion disksp. 296
12.2.1 Flat disksp. 296
12.2.2 Inflated disksp. 299
12.3 Reflection nebulaep. 302
12.4 Starburst nucleip. 304
12.5 Mass loss giantsp. 307
12.5.1 Flow equationsp. 307
12.5.2 Solutions to the flow equationsp. 310
12.6 The effective extinction curvep. 314
12.6.1 The effective optical thicknessp. 314
12.6.2 Monte Carlo simulationsp. 316
A Various dust related physicsp. 319
A.1 Boltzmann statisticsp. 319
A.1.1 The probability of an arbitrary energy distributionp. 319
A.1.2 Partition function and population of energy cellsp. 321
A.1.3 The mean energy of harmonic oscillatorsp. 323
A.1.4 The Maxwellian velocity distributionp. 323
A.2 Quantum statisticsp. 325
A.2.1 The unit cell h[superscript 3] of phase spacep. 325
A.2.2 Bosons and fermionsp. 326
A.3 Thermodynamicsp. 328
A.3.1 The ergodic hypothesisp. 328
A.3.2 Definition of entropy and temperaturep. 330
A.3.3 The canonical distributionp. 331
A.3.4 Thermodynamic relationsp. 332
A.3.5 Equilibrium conditions of the state functionsp. 335
A.4 Blackbody radiationp. 337
A.4.1 The Planck functionp. 337
A.4.2 Low and high frequency limitp. 338
A.4.3 The laws of Wien and Stefan-Boltzmannp. 339
A.5 The classical Hamiltonianp. 340
A.5.1 Normal coordinatesp. 341
A.6 The Hamiltonian in quantum mechanicsp. 342
A.6.1 The time-dependent Schrodinger equationp. 342
A.6.2 Stationary solutionsp. 343
A.6.3 The dipole moment of a transitionp. 343
A.6.4 The quantized harmonic oscillatorp. 344
A.7 The Einstein coefficients A and Bp. 346
A.7.1 Induced and spontaneous transitionsp. 346
A.8 Potential wells and tunnelingp. 348
A.8.1 Wave function of a particle in a constant potentialp. 348
A.8.2 Potential walls and Fermi energyp. 349
A.8.3 Rectangular potential barriersp. 350
A.8.4 The double potential wellp. 354
B Miscellaneousp. 357
B.1 Mathematical notationsp. 357
B.2 Mathematical formulaep. 358
B.2.1 Sums and integralsp. 358
B.2.2 The bell curvep. 358
B.2.3 Polynomialsp. 359
B.2.4 Vector analysisp. 360
B.2.5 The time average of an harmonically varying fieldp. 361
B.3 Cosmic constantsp. 362
B.4 Problem setp. 363
B.5 List of symbolsp. 374
Bibliographyp. 377
Indexp. 381