Cover image for Wavelets in electromagnetics and device modeling
Title:
Wavelets in electromagnetics and device modeling
Personal Author:
Series:
Wiley series in microwave and optical engineering
Publication Information:
Hoboken, NJ. : Wiley-Interscience, 2003.
Physical Description:
xvii, 531 p. : ill. ; 25 cm.
ISBN:
9780471419013

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010255178 TK7874 P3475 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

* The first book on the subject.
* Written by an acknowledged expert in the field.
* The techniques discussed have important applications to wireless engineering.


Author Notes

George W. Pan is Professor of Electrical Engineering and Director of the Electronic Packaging Lab at Arizona State University.


Table of Contents

Prefacep. xv
1 Notations and Mathematical Preliminariesp. 1
1.1 Notations and Abbreviationsp. 1
1.2 Mathematical Preliminariesp. 2
1.2.1 Functions and Integrationp. 2
1.2.2 The Fourier Transformp. 4
1.2.3 Regularityp. 4
1.2.4 Linear Spacesp. 7
1.2.5 Functional Spacesp. 8
1.2.6 Sobolev Spacesp. 10
1.2.7 Bases in Hilbert Space Hp. 11
1.2.8 Linear Operatorsp. 12
Bibliographyp. 14
2 Intuitive Introduction to Waveletsp. 15
2.1 Technical History and Backgroundp. 15
2.1.1 Historical Developmentp. 15
2.1.2 When Do Wavelets Work?p. 16
2.1.3 A Wave Is a Wave but What Is a Wavelet?p. 17
2.2 What Can Wavelets Do in Electromagnetics and Device Modeling?p. 18
2.2.1 Potential Benefits of Using Waveletsp. 18
2.2.2 Limitations and Future Direction of Waveletsp. 19
2.3 The Haar Wavelets and Multiresolution Analysisp. 20
2.4 How Do Wavelets Work?p. 23
Bibliographyp. 28
3 Basic Orthogonal Wavelet Theoryp. 30
3.1 Multiresolution Analysisp. 30
3.2 Construction of Scalets [phi]([tau])p. 32
3.2.1 Franklin Scaletp. 32
3.2.2 Battle-Lemarie Scaletsp. 39
3.2.3 Preliminary Properties of Scaletsp. 40
3.3 Wavelet [psi]([tau])p. 42
3.4 Franklin Waveletp. 48
3.5 Properties of Scalets [phi]([omega])p. 51
3.6 Daubechies Waveletsp. 56
3.7 Coifman Wavelets (Coiflets)p. 64
3.8 Constructing Wavelets by Recursion and Iterationp. 69
3.8.1 Construction of Scaletsp. 69
3.8.2 Construction of Waveletsp. 74
3.9 Meyer Waveletsp. 75
3.9.1 Basic Properties of Meyer Waveletsp. 75
3.9.2 Meyer Wavelet Familyp. 83
3.9.3 Other Examples of Meyer Waveletsp. 92
3.10 Mallat's Decomposition and Reconstructionp. 92
3.10.1 Reconstructionp. 92
3.10.2 Decompositionp. 93
3.11 Problemsp. 95
3.11.1 Exercise 1p. 95
3.11.2 Exercise 2p. 95
3.11.3 Exercise 3p. 97
3.11.4 Exercise 4p. 97
Bibliographyp. 98
4 Wavelets in Boundary Integral Equationsp. 100
4.1 Wavelets in Electromagneticsp. 100
4.2 Linear Operatorsp. 102
4.3 Method of Moments (MoM)p. 103
4.4 Functional Expansion of a Given Functionp. 107
4.5 Operator Expansion: Nonstandard Formp. 110
4.5.1 Operator Expansion in Haar Waveletsp. 111
4.5.2 Operator Expansion in General Wavelet Systemsp. 113
4.5.3 Numerical Examplep. 114
4.6 Periodic Waveletsp. 120
4.6.1 Construction of Periodic Waveletsp. 120
4.6.2 Properties of Periodic Waveletsp. 123
4.6.3 Expansion of a Function in Periodic Waveletsp. 127
4.7 Application of Periodic Wavelets: 2D Scatteringp. 128
4.8 Fast Wavelet Transform (FWT)p. 133
4.8.1 Discretization of Operation Equationsp. 133
4.8.2 Fast Algorithmp. 134
4.8.3 Matrix Sparsification Using FWTp. 135
4.9 Applications of the FWTp. 140
4.9.1 Formulationp. 140
4.9.2 Circuit Parametersp. 141
4.9.3 Integral Equations and Wavelet Expansionp. 143
4.9.4 Numerical Resultsp. 144
4.10 Intervallic Coifman Waveletsp. 144
4.10.1 Intervallic Scaletsp. 145
4.10.2 Intervallic Wavelets on [0, 1]p. 154
4.11 Lifting Scheme and Lazy Waveletsp. 156
4.11.1 Lazy Waveletsp. 156
4.11.2 Lifting Scheme Algorithmp. 157
4.11.3 Cascade Algorithmp. 159
4.12 Green's Scalets and Sampling Seriesp. 159
4.12.1 Ordinary Differential Equations (ODEs)p. 160
4.12.2 Partial Differential Equations (PDEs)p. 166
4.13 Appendix: Derivation of Intervallic Wavelets on [0, 1]p. 172
4.14 Problemsp. 185
4.14.1 Exercise 5p. 185
4.14.2 Exercise 6p. 185
4.14.3 Exercise 7p. 185
4.14.4 Exercise 8p. 186
4.14.5 Project 1p. 187
Bibliographyp. 187
5 Sampling Biorthogonal Time Domain Method (SBTD)p. 189
5.1 Basis FDTD Formulationp. 189
5.2 Stability Analysis for the FDTDp. 194
5.3 FDTD as Maxwell's Equations with Haar Expansionp. 198
5.4 FDTD with Battle-Lemarie Waveletsp. 201
5.5 Positive Sampling and Biorthogonal Testing Functionsp. 205
5.6 Sampling Biorthogonal Time Domain Methodp. 215
5.6.1 SBTD versus MRTDp. 215
5.6.2 Formulationp. 215
5.7 Stability Conditions for Wavelet-Based Methodsp. 219
5.7.1 Dispersion Relation and Stability Analysisp. 219
5.7.2 Stability Analysis for the SBTDp. 222
5.8 Convergence Analysis and Numerical Dispersionp. 223
5.8.1 Numerical Dispersionp. 223
5.8.2 Convergence Analysisp. 225
5.9 Numerical Examplesp. 228
5.10 Appendix: Operator Form of the MRTDp. 233
5.11 Problemsp. 236
5.11.1 Exercise 9p. 236
5.11.2 Exercise 10p. 237
5.11.3 Project 2p. 237
Bibliographyp. 238
6 Canonical Multiwaveletsp. 240
6.1 Vector-Matrix Dilation Equationp. 240
6.2 Time Domain Approachp. 242
6.3 Construction of Multiscaletsp. 245
6.4 Orthogonal Multiwavelets [psi](t)p. 255
6.5 Intervallic Multiwavelets [psi](t)p. 258
6.6 Multiwavelet Expansionp. 261
6.7 Intervallic Dual Multiwavelets [psi](t)p. 264
6.8 Working Examplesp. 269
6.9 Multiscalet-Based 1D Finite Element Method (FEM)p. 276
6.10 Multiscalet-Based Edge Element Methodp. 280
6.11 Spurious Modesp. 285
6.12 Appendixp. 287
6.13 Problemsp. 296
6.13.1 Exercise 11p. 296
Bibliographyp. 297
7 Wavelets in Scattering and Radiationp. 299
7.1 Scattering from a 2D Groovep. 299
7.1.1 Method of Moments (MoM) Formulationp. 300
7.1.2 Coiflet-Based MoMp. 304
7.1.3 Bi-CGSTAB Algorithmp. 305
7.1.4 Numerical Resultsp. 305
7.2 2D and 3D Scattering Using Intervallic Coifletsp. 309
7.2.1 Intervallic Scalets on [0, 1]p. 309
7.2.2 Expansion in Coifman Intervallic Waveletsp. 312
7.2.3 Numerical Integration and Error Estimatep. 313
7.2.4 Fast Construction of Impedance Matrixp. 317
7.2.5 Conducting Cylinders, TM Casep. 319
7.2.6 Conducting Cylinders with Thin Magnetic Coatingp. 322
7.2.7 Perfect Electrically Conducting (PEC) Spheroidsp. 324
7.3 Scattering and Radiation of Curved Thin Wiresp. 329
7.3.1 Integral Equation for Curved Thin-Wire Scatterers and Antennaep. 330
7.3.2 Numerical Examplesp. 331
7.4 Smooth Local Cosine (SLC) Methodp. 340
7.4.1 Construction of Smooth Local Cosine Basisp. 341
7.4.2 Formulation of 2D Scattering Problemsp. 344
7.4.3 SLC-Based Galerkin Procedure and Numerical Resultsp. 347
7.4.4 Application of the SLC to Thin-Wire Scatterers and Antennasp. 355
7.5 Microstrip Antenna Arraysp. 357
7.5.1 Impedance Matched Sourcep. 358
7.5.2 Far-Zone Fields and Antenna Patternsp. 360
Bibliographyp. 363
8 Wavelets in Rough Surface Scatteringp. 366
8.1 Scattering of EM Waves from Randomly Rough Surfacesp. 366
8.2 Generation of Random Surfacesp. 368
8.2.1 Autocorrelation Methodp. 370
8.2.2 Spectral Domain Methodp. 373
8.3 2D Rough Surface Scatteringp. 376
8.3.1 Moment Method Formulation of 2D Scatteringp. 376
8.3.2 Wavelet-Based Galerkin Method for 2D Scatteringp. 380
8.3.3 Numerical Results of 2D Scatteringp. 381
8.4 3D Rough Surface Scatteringp. 387
8.4.1 Tapered Wave of Incidencep. 388
8.4.2 Formulation of 3D Rough Surface Scattering Using Waveletsp. 391
8.4.3 Numerical Results of 3D Scatteringp. 394
Bibliographyp. 399
9 Wavelets in Packaging, Interconnects, and EMCp. 401
9.1 Quasi-static Spatial Formulationp. 402
9.1.1 What Is Quasi-static?p. 402
9.1.2 Formulationp. 403
9.1.3 Orthogonal Wavelets in L[superscript 2]([0,1])p. 406
9.1.4 Boundary Element Method and Wavelet Expansionp. 408
9.1.5 Numerical Examplesp. 412
9.2 Spatial Domain Layered Green's Functionsp. 415
9.2.1 Formulationp. 417
9.2.2 Prony's Methodp. 423
9.2.3 Implementation of the Coifman Waveletsp. 424
9.2.4 Numerical Examplesp. 426
9.3 Skin-Effect Resistance and Total Inductancep. 429
9.3.1 Formulationp. 431
9.3.2 Moment Method Solution of Coupled Integral Equationsp. 433
9.3.3 Circuit Parameter Extractionp. 435
9.3.4 Wavelet Implementationp. 437
9.3.5 Measurement and Simulation Resultsp. 438
9.4 Spectral Domain Green's Function-Based Full-Wave Analysisp. 440
9.4.1 Basic Formulationp. 440
9.4.2 Wavelet Expansion and Matrix Equationp. 444
9.4.3 Evaluation of Sommerfeld-Type Integralsp. 447
9.4.4 Numerical Results and Sparsity of Impedance Matrixp. 451
9.4.5 Further Improvementsp. 455
9.5 Full-Wave Edge Element Method for 3D Lossy Structuresp. 455
9.5.1 Formulation of Asymmetric Functionals with Truncation Conditionsp. 456
9.5.2 Edge Element Procedurep. 460
9.5.3 Excess Capacitance and Inductancep. 464
9.5.4 Numerical Examplesp. 466
Bibliographyp. 469
10 Wavelets in Nonlinear Semiconductor Devicesp. 474
10.1 Physical Models and Computational Effortsp. 474
10.2 An Interpolating Subdivision Schemep. 476
10.3 The Sparse Point Representation (SPR)p. 478
10.4 Interpolation Wavelets in the FDMp. 479
10.4.1 1D Example of the SPR Applicationp. 480
10.4.2 2D Example of the SPR Applicationp. 481
10.5 The Drift-Diffusion Modelp. 484
10.5.1 Scalingp. 486
10.5.2 Discretizationp. 487
10.5.3 Transient Solutionp. 489
10.5.4 Grid Adaptation and Interpolating Waveletsp. 490
10.5.5 Numerical Resultsp. 492
10.6 Multiwavelet Based Drift-Diffusion Modelp. 498
10.6.1 Precision and Stability versus Reynoldsp. 499
10.6.2 MWFEM-Based 1D Simulationp. 502
10.7 The Boltzmann Transport Equation (BTE) Modelp. 504
10.7.1 Why BTE?p. 505
10.7.2 Spherical Harmonic Expansion of the BTEp. 505
10.7.3 Arbitrary Order Expansion and Galerkin's Procedurep. 509
10.7.4 The Coupled Boltzmann-Poisson Systemp. 515
10.7.5 Numerical Resultsp. 517
Bibliographyp. 524
Indexp. 527