Cover image for Mechatronics : dynamics of electromechanical and piezoelectric systems
Title:
Mechatronics : dynamics of electromechanical and piezoelectric systems
Personal Author:
Publication Information:
Dordrecht, The Netherland : Springer, 2006
ISBN:
9781402046957

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010103130 TJ163.12 P73 2006 Open Access Book Book
Searching...
Searching...
30000003484148 TJ163.12 P73 2006 Open Access Book Book
Searching...
Searching...
30000010135002 TJ163.12 P73 2006 Open Access Book Book
Searching...
Searching...
30000003484155 TJ163.12 P73 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.:"Dynamics of Mechanical and Electromechanical Systems", published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.


Table of Contents

Prefacep. xiii
1 Lagrangian dynamics of mechanical systemsp. 1
1.1 Introductionp. 1
1.2 Kinetic state functionsp. 2
1.3 Generalized coordinates, kinematic constraintsp. 4
1.3.1 Virtual displacementsp. 7
1.4 The principle of virtual workp. 8
1.5 D'Alembert's principlep. 10
1.6 Hamilton's principlep. 11
1.6.1 Lateral vibration of a beamp. 14
1.7 Lagrange's equationsp. 17
1.7.1 Vibration of a linear, non-gyroscopic, discrete systemp. 19
1.7.2 Dissipation functionp. 19
1.7.3 Example 1: Pendulum with a sliding massp. 20
1.7.4 Example 2: Rotating pendulump. 22
1.7.5 Example 3: Rotating spring mass systemp. 23
1.7.6 Example 4: Gyroscopic effectsp. 24
1.8 Lagrange's equations with constraintsp. 27
1.9 Conservation lawsp. 29
1.9.1 Jacobi integralp. 29
1.9.2 Ignorable coordinatep. 30
1.9.3 Example: The spherical pendulump. 32
1.10 More on continuous systemsp. 32
1.10.1 Rayleigh-Ritz methodp. 32
1.10.2 General continuous systemp. 34
1.10.3 Green strain tensorp. 34
1.10.4 Geometric strain energy due to prestressp. 35
1.10.5 Lateral vibration of a beam with axial loadsp. 37
1.10.6 Example: Simply supported beam in compressionp. 38
1.11 Referencesp. 39
2 Dynamics of electrical networksp. 41
2.1 Introductionp. 41
2.2 Constitutive equations for circuit elementsp. 42
2.2.1 The Capacitorp. 42
2.2.2 The Inductorp. 43
2.2.3 Voltage and current sourcesp. 45
2.3 Kirchhoff's lawsp. 46
2.4 Hamilton's principle for electrical networksp. 47
2.4.1 Hamilton's principle, charge formulationp. 48
2.4.2 Hamilton's principle, flux linkage formulationp. 49
2.4.3 Discussionp. 51
2.5 Lagrange's equationsp. 53
2.5.1 Lagrange's equations, charge formulationp. 53
2.5.2 Lagrange's equations, flux linkage formulationp. 54
2.5.3 Example 1p. 54
2.5.4 Example 2p. 57
2.6 Referencesp. 59
3 Electromechanical systemsp. 61
3.1 Introductionp. 61
3.2 Constitutive relations for transducersp. 61
3.2.1 Movable-plate capacitorp. 62
3.2.2 Movable-core inductorp. 65
3.2.3 Moving-coil transducerp. 68
3.3 Hamilton's principlep. 71
3.3.1 Displacement and charge formulationp. 71
3.3.2 Displacement and flux linkage formulationp. 72
3.4 Lagrange's equationsp. 73
3.4.1 Displacement and charge formulationp. 73
3.4.2 Displacement and flux linkage formulationp. 73
3.4.3 Dissipation functionp. 74
3.5 Examplesp. 76
3.5.1 Electromagnetic plungerp. 76
3.5.2 Electromagnetic loudspeakerp. 77
3.5.3 Capacitive microphonep. 79
3.5.4 Proof-mass actuatorp. 82
3.5.5 Electrodynamic isolatorp. 84
3.5.6 The Sky-hook damperp. 86
3.5.7 Geophonep. 87
3.5.8 One-axis magnetic suspensionp. 89
3.6 General electromechanical transducerp. 92
3.6.1 Constitutive equationsp. 92
3.6.2 Self-sensingp. 93
3.7 Referencesp. 94
4 Piezoelectric systemsp. 95
4.1 Introductionp. 95
4.2 Piezoelectric transducerp. 96
4.3 Constitutive relations of a discrete transducerp. 99
4.3.1 Interpretation of k[superscript 2]p. 103
4.4 Structure with a discrete piezoelectric transducerp. 105
4.4.1 Voltage sourcep. 107
4.4.2 Current sourcep. 107
4.4.3 Admittance of the piezoelectric transducerp. 108
4.4.4 Prestressed transducerp. 109
4.4.5 Active enhancement of the electromechanical couplingp. 111
4.5 Multiple transducer systemsp. 113
4.6 General piezoelectric structurep. 114
4.7 Piezoelectric materialp. 116
4.7.1 Constitutive relationsp. 116
4.7.2 Coenergy density functionp. 118
4.8 Hamilton's principlep. 121
4.9 Rosen's piezoelectric transformerp. 124
4.10 Referencesp. 130
5 Piezoelectric laminatesp. 131
5.1 Piezoelectric beam actuatorp. 131
5.1.1 Hamilton's principlep. 131
5.1.2 Piezoelectric loadsp. 133
5.2 Laminar sensorp. 136
5.2.1 Current and charge amplifiersp. 136
5.2.2 Distributed sensor outputp. 136
5.2.3 Charge amplifier dynamicsp. 138
5.3 Spatial modal filtersp. 139
5.3.1 Modal actuatorp. 139
5.3.2 Modal sensorp. 140
5.4 Active beam with collocated actuator-sensorp. 141
5.4.1 Frequency response functionp. 142
5.4.2 Pole-zero patternp. 143
5.4.3 Modal truncationp. 145
5.5 Piezoelectric laminatep. 147
5.5.1 Two dimensional constitutive equationsp. 148
5.5.2 Kirchhoff theoryp. 148
5.5.3 Stiffness matrix of a multi-layer elastic laminatep. 149
5.5.4 Multi-layer laminate with a piezoelectric layerp. 151
5.5.5 Equivalent piezoelectric loadsp. 152
5.5.6 Sensor outputp. 153
5.5.7 Remarksp. 154
5.6 Referencesp. 156
6 Active and passive damping with piezoelectric transducersp. 159
6.1 Introductionp. 159
6.2 Active strut, open-loop FRFp. 161
6.3 Active damping via IFFp. 165
6.3.1 Voltage controlp. 165
6.3.2 Modal coordinatesp. 167
6.3.3 Current controlp. 169
6.4 Admittance of the piezoelectric transducerp. 170
6.5 Damping via resistive shuntingp. 172
6.5.1 Damping enhancement via negative capacitance shuntingp. 175
6.5.2 Generalized electromechanical coupling factorp. 176
6.6 Inductive shuntingp. 176
6.6.1 Alternative formulationp. 181
6.7 Decentralized controlp. 183
6.8 General piezoelectric structurep. 184
6.9 Self-sensingp. 185
6.9.1 Force sensingp. 186
6.9.2 Displacement sensingp. 187
6.9.3 Transfer functionp. 187
6.10 Other active damping strategiesp. 191
6.10.1 Lead controlp. 191
6.10.2 Positive Position Feedback (PPF)p. 192
6.11 Remarkp. 195
6.12 Referencesp. 195
Bibliographyp. 199
Indexp. 205