Cover image for Target acquisition in communication electronic warfare systems
Title:
Target acquisition in communication electronic warfare systems
Personal Author:
Series:
Artech House information warfare library
Publication Information:
Norwood, MA : Artech House, 2004
ISBN:
9781580539135

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010082486 UG590 P64 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This cutting-edge resource arms you with the full array of traditional methods and modern high-resolution techniques for acquiring communications targets. The book enables you to develop optimum methods for acquiring communications targets for exploitation or countermeasures. Additionally, you learn how to establish the optimum techniques for detection of deterministic signals with random parameters as well as stochastic signals. Whether you design or operate EW systems, you can turn to this guide to measure how effectively your EW systems cope in crowded RF environments.


Author Notes

Richard A. Poisel is a senior engineering fellow at Raytheon Missile Systems, and previously was chief scientist at the U.S. Army Research, Development, and Engineering Command, Intelligence and Information Warfare Laboratory, Ft. Monmouth, New Jersey.


Table of Contents

Prefacep. xi
Chapter 1 Introductionp. 1
1.1 Electronic Warfarep. 1
1.2 Communications and EWp. 2
1.3 Signal Detectionp. 4
1.4 Signal Searchingp. 9
1.5 Notationp. 10
1.6 Concluding Remarksp. 10
Referencesp. 11
Chapter 2 Deterministic and Stochastic Processesp. 13
2.1 The Fourier Transformp. 13
2.1.1 Important Fourier Transformsp. 15
2.2 Deterministic Signalsp. 22
2.2.1 Energy and Power in Deterministic Signalsp. 24
2.3 Stochastic Processesp. 25
2.3.1 Ensemblesp. 25
2.3.2 Power Spectral Densitiesp. 27
2.3.3 Mean, Autocorrelation, and Autocovariance Functionsp. 28
2.3.4 Stationary and Wide-Sense Stationary Processesp. 29
2.3.5 Ergodic Processesp. 30
2.3.6 Cyclostationary Processesp. 30
2.4 Stochastic Signalsp. 31
2.5 White Noisep. 39
2.5.1 Signals in Noisep. 40
2.6 Concluding Remarksp. 41
Referencesp. 41
Chapter 3 Target Search Methodsp. 43
3.1 General Searchp. 45
3.2 Directed Searchp. 49
3.3 Concluding Remarksp. 49
Referencesp. 50
Chapter 4 Hypothesis Testing for Signal Detectionp. 51
4.1 Hypothesis Testingp. 51
4.2 Receiver Operating Characteristicsp. 54
4.3 Likelihood Ratiop. 56
4.4 Hypothesis Testsp. 57
4.4.1 Bayes Criterionp. 59
4.4.2 Minimax Criterionp. 64
4.4.3 Neyman-Pearson Criterionp. 67
4.5 Multiple Measurementsp. 68
4.6 Multiple Hypothesesp. 69
4.7 Concluding Remarksp. 69
Referencesp. 70
Chapter 5 Target Parameter Estimationp. 71
5.1 Signal Parameter Estimationp. 71
5.2 The Cramer-Rao Boundp. 73
5.2.1 CRLB for Signals in AWGNp. 77
5.3 Maximum Likelihood Estimationp. 88
5.4 Concluding Remarksp. 99
Referencesp. 99
Chapter 6 Spectrum Estimationp. 101
6.1 Spectrum Estimation with the Periodogramp. 101
6.1.1 Averaged Periodogramp. 105
6.2 Blackman-Tukey Spectrum Estimationp. 108
6.3 Windowsp. 111
6.3.1 Other Windowsp. 112
6.3.2 Windows Summaryp. 115
6.4 Frequency Domain Detector Performancep. 115
6.5 Concluding Remarksp. 122
Referencesp. 124
Chapter 7 Detection of Deterministic Signalsp. 125
7.1 Detection of Deterministic Signals with Known Parametersp. 126
7.1.1 Matched Filter Detectionp. 127
7.1.2 Matched Filter Performancep. 131
7.2 Detection of Deterministic Signals with Unknown Parametersp. 135
7.2.1 Quadrature Detectorp. 135
7.2.2 GLRT Detectionp. 141
7.2.3 Detection of Sinusoidal Carriers with Unknown Parametersp. 151
7.2.4 Locally Optimum Test for Weak Signal Detectionp. 157
7.2.5 Bayes Linear Modelp. 174
7.2.6 MLE of the Unknown Parameters of Sinusoids in AWGNp. 179
7.2.7 Optimum Detection of Deterministic Signals with Unknown Parameters in Impulsive Noisep. 184
7.3 Concluding Remarksp. 187
Referencesp. 189
Chapter 8 Detection of Stochastic Signalsp. 191
8.1 Detection of Random Signals with Unknown Parametersp. 191
8.1.1 GLRT Detection of Stochastic Signalsp. 191
8.1.2 Locally Optimum Detection of Stochastic Signalsp. 197
8.2 Radiometerp. 200
8.2.1 Radiometerp. 201
8.2.2 Radiometer Performancep. 202
8.2.3 Radiometer Modelsp. 203
8.2.4 Uncertain Noise Powerp. 210
8.2.5 Local Oscillator Offsetp. 212
8.3 Concluding Remarksp. 214
Referencesp. 214
Chapter 9 High-Resolution Spectrum Estimationp. 217
9.1 Autoregressive Moving Average Modelingp. 217
9.1.1 Moving Average Modelingp. 221
9.1.2 Autoregressive Modelingp. 222
9.1.3 ARMA Modelingp. 223
9.1.4 Maximum Entropy Spectral Estimationp. 231
9.1.5 Model Order Determinationp. 238
9.1.6 Resolution of AR Spectral Analysisp. 242
9.2 Line Spectrap. 247
9.2.1 Least Squaresp. 249
9.2.2 Prony's Methodp. 250
9.2.3 Modified Prony Methodsp. 251
9.3 Signal Subspace Techniquesp. 251
9.3.1 Pisarenko Methodp. 258
9.3.2 Root Pisarenkop. 263
9.3.3 MUSICp. 264
9.3.4 Minimum Normp. 266
9.3.5 Principal Components Spectrum Estimationp. 268
9.4 Maximum Likelihoodp. 269
9.5 Resolution Comparisonp. 270
9.6 Peak Determinationp. 277
9.7 Concluding Remarksp. 277
Referencesp. 283
Chapter 10 Artifical Reasoning for Target Identificationp. 285
10.1 Evidential Reasoningp. 285
10.1.1 Rules of Combinationp. 289
10.1.2 Limitations of the Dempster-Shafer Methodp. 295
10.2 Fuzzy Logicp. 296
10.2.1 Fuzzy and Crisp Setsp. 296
10.2.2 Relationshipsp. 299
10.2.3 Common Membership Functionsp. 301
10.2.4 Fuzzy If-Then Rulesp. 306
10.2.5 Fuzzy Reasoningp. 307
10.3 Concluding Remarksp. 316
Referencesp. 319
Chapter 11 Resource Allocationp. 321
11.1 Queuesp. 321
11.1.1 Statistics for Queuing Theoryp. 323
11.1.2 Kendall-Lee Notationp. 325
11.1.3 Queue Relationshipsp. 326
11.1.4 M/M/1 Modelp. 327
11.1.5 Other Queue Typesp. 331
11.2 Concluding Remarksp. 331
Referencesp. 332
Appendix A Lagrange Multipliersp. 335
Appendix B Convex Functionsp. 339
Referencep. 343
List of Acronymsp. 345
About the Authorp. 349
Indexp. 351