Cover image for Integrated product design and manufacturing using geometric dimensioning and tolerancing
Title:
Integrated product design and manufacturing using geometric dimensioning and tolerancing
Personal Author:
Series:
Manufacturing engineering and materials processing ; 60
Publication Information:
New York, NY : Society of Manufacturing Engineers, 2003
ISBN:
9780824788902
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010127207 T357 C35 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

This book addresses the preparation and application of design layout analyses with concurrent engineering teams in six steps that capture design intent and add value to design process. It offers tools for eliminating costly trial-and-error approaches and deliver economically viable products. The authors discuss product design techniques that alleviate the constraints between product definition, manufacturing, and inspection, the prediction of variation effects on product function and manufacturing efficiency, functional inspection techniques that include CMM measurement, optical comparators, and surface plate and functional gaging, and more.


Author Notes

Campbell, Bob


Table of Contents

Ed Boyer
Forewordp. v
Prefacep. ix
Acknowledgmentsp. xiii
1 Introductionp. 1
2 What Are the Techniques?p. 7
2.1 Introductionp. 7
2.2 Product Definitionp. 8
2.3 The Language of Concurrent Engineering--Y14.5Mp. 11
2.4 Concurrent Engineeringp. 13
2.5 Summaryp. 22
Referencesp. 23
3 The Basis of the Systemp. 25
3.1 Introductionp. 25
3.2 Y14.5M Conceptsp. 26
3.2.1 Datum Reference Framesp. 26
3.2.2 Tooling and Gage Datum Elementsp. 33
3.2.3 Interrelated and Interchangeable Featuresp. 36
3.2.4 Boundary and Axial Conceptsp. 37
3.2.5 Taylor's Principlep. 40
3.2.6 Refinement of Controlsp. 43
3.3 Application Considerationsp. 44
3.3.1 Production Variationp. 45
3.3.2 Datum Accuracyp. 45
3.3.3 Interchangeability and Assembleabilityp. 46
3.3.4 Verifiable Controlsp. 46
3.3.5 Material Modifiersp. 47
3.3.6 Basic Interchangeability Gagesp. 51
3.4 Summaryp. 53
Referencesp. 54
4 Design Layoutp. 55
4.1 Introductionp. 55
4.2 Product Architecturep. 55
4.3 The Six-Step Methodologyp. 58
4.3.1 Design Layoutp. 59
4.3.2 Identification and Removal of Critical Characteristicsp. 61
4.3.3 Mechanical Simulationp. 65
4.3.4 Consideration of DFAp. 66
4.3.5 Design of Experimentsp. 67
4.3.6 Physical Prototypingp. 69
4.3.7 Metrology and Product Developmentp. 70
4.4 Summaryp. 72
Referencesp. 72
5 A Producible Componentp. 73
5.1 Introductionp. 73
5.2 Step One: The Datum Reference Framep. 75
5.3 Step Two: The Fixture Layoutp. 78
5.4 Step Three: Gaging and Measurementp. 83
5.5 Step Four: Fixture Controlsp. 85
5.6 Step Five: Tooling Packagep. 88
5.7 Step Six: Engineering Changesp. 90
5.8 Summaryp. 91
Referencesp. 91
6 First Steps Toward Productionp. 93
6.1 Introductionp. 93
6.2 Designp. 95
6.2.1 Datum Specificationp. 95
6.2.2 Setupsp. 96
6.2.3 Datum Selectionp. 96
6.2.4 Datum Qualificationp. 96
6.2.5 Datum Identificationp. 97
6.3 Single Datum Reference Frame Dimensioningp. 99
6.4 Tolerancingp. 100
6.4.1 Positional Tolerance Specificationp. 101
6.4.2 The Zero Positional Controlp. 101
6.5 Phantom-Gage Dimensioningp. 102
6.5.1 Design Layoutp. 103
6.5.2 Part/Gage Design Parametersp. 104
6.5.3 Defining Functional Gages from the Design Layoutp. 105
6.6 Applications of Phantom Gagingp. 107
6.7 Conclusionsp. 108
7 Dimensional Measurementsp. 109
7.1 Introductionp. 109
7.2 Measurement Theoryp. 110
7.2.1 The Measurement Modelp. 110
7.2.2 True Valuep. 110
7.2.3 Error and Uncertaintyp. 114
7.2.4 Precision and Accuracyp. 114
7.2.5 Precision, Bias, Accuracy--An Illustrationp. 115
7.3 Statistical Techniquesp. 117
7.3.1 Statistical Conceptsp. 117
7.3.2 Random Uncertaintiesp. 120
7.3.3 Systematic Uncertaintyp. 122
7.3.4 Uncertainty in Definitionp. 123
7.3.5 Averages and Individuals--An Examplep. 123
7.4 Measurement Planningp. 127
7.4.1 Functional Representation/Design Intentp. 128
7.4.2 Derived Geometryp. 129
7.4.3 Conformancep. 129
7.4.4 Methods and Proceduresp. 131
7.4.5 Link to System of Unitsp. 131
7.5 Summaryp. 132
Referencesp. 133
8 Inspection and Verificationp. 135
8.1 Introductionp. 135
8.2 Process Planningp. 136
8.2.1 Process Variationp. 136
8.2.2 Measurement Qualityp. 140
8.2.3 Plan Contentp. 141
8.3 Inspection Process Uncertaintyp. 142
8.4 Tolerance Characteristics and Modelingp. 144
8.5 Setupp. 147
8.5.1 Datum Planesp. 147
8.5.2 Point Contactp. 148
8.5.3 Axis Angularityp. 148
8.6 Temperature Changesp. 150
8.7 Equipment Inaccuraciesp. 151
8.8 Operator-Induced Uncertaintyp. 153
8.8.1 Biasp. 153
8.8.2 Observationp. 154
8.8.3 Computationp. 154
8.8.4 Setupp. 154
8.9 Free-State Variationp. 154
8.10 Recording Inspection Resultsp. 155
8.10.1 Recording Setupp. 155
8.10.2 Recording Hole Axis Angularityp. 157
8.10.3 Recording Tolerancesp. 157
8.11 Conclusionp. 157
Referencesp. 158
9 Functional Gagingp. 159
9.1 Introductionp. 159
9.2 Functional Gaging Principlesp. 161
9.3 Feature Relation Gagesp. 162
9.3.1 Internal Feature Patternsp. 162
9.3.2 External Feature Patternsp. 169
9.4 Design Principles for Feature Location and Relation Gagingp. 172
9.4.1 Critical (RFS) Part Datum Featuresp. 172
9.4.2 Critical (MMC) Part Datum Featuresp. 176
9.4.3 Independent Hole Patternsp. 179
9.4.4 Two Critical Datum Featuresp. 180
9.4.5 Multiple Datum Features, with Independent Hole Patternp. 182
9.4.6 Datum Features Related to Primary Datum Planep. 184
9.4.7 Three-Hole Pattern and External Datum Featurep. 186
9.4.8 Three-Hole Pattern and Internal Datum Featurep. 187
9.4.9 Cylindrical Part with Two-Pin Patternsp. 188
9.4.10 Two Radial Patterns of Pins and Slotsp. 190
9.5 Review of Principles and Applicationsp. 191
10 Functional Gage Tolerancingp. 193
10.1 Introductionp. 193
10.2 Gaging Element Size and Material Modifiersp. 194
10.3 Workpiece Examplep. 195
10.4 Zero Positional Tolerance at LMCp. 197
10.4.1 LMC Gage Pin at True Positionp. 198
10.4.2 MMC Gage Pin at True Positionp. 198
10.4.3 MMC Gage Pin with Maximum Positional Errorp. 199
10.5 Resultsp. 200
10.6 Alternate Form of Analysisp. 202
10.7 Fits and Allowancesp. 204
10.8 Building the Gagep. 204
10.8.1 Machine Tool Capabilitiesp. 204
10.8.2 Single-Setup Gage Feature Manufacturep. 206
10.8.3 Gage Assembly Operationsp. 208
10.9 Summaryp. 209
Referencesp. 210
Appendix 10.Ap. 211
11 Functional Inspection Techniquesp. 219
11.1 Introductionp. 219
11.2 Functional Gaging with Surface Platesp. 220
11.2.1 Gaging Positional Tolerancesp. 220
11.2.2 Gaging Form and Orientation Tolerancesp. 224
11.3 Functional Gaging with Coordinate Measuring Machinesp. 226
11.3.1 Functional CMM Programmingp. 227
11.3.2 Hypothetical Conversionp. 228
11.3.3 Examplesp. 229
11.4 Functional Gaging with Optical Comparatorsp. 232
11.4.1 Applicationsp. 233
11.4.2 Profile Tolerancingp. 233
11.5 Paper Layout Gagingp. 236
11.5.1 Applicationp. 237
11.5.2 Parts That Can Be Paper Gagedp. 239
11.5.3 Paper Gaging Procedurep. 240
11.5.4 Inspection Results Layoutp. 241
11.5.5 Tolerance Layoutp. 243
11.5.6 Combining Layoutsp. 244
11.5.7 Allowance Factorsp. 245
11.5.8 Analyzing Resultsp. 247
11.5.9 Paper Gages Compared to Other Functional Gagesp. 248
11.6 Summaryp. 249
Referencesp. 249
12 Functional Workholding and Fixturingp. 251
12.1 Introductionp. 251
12.2 Functional Fixturesp. 253
12.3 Functional Fixturing Principlesp. 253
12.4 Fixture Design Conceptsp. 254
12.5 Design Detailsp. 260
12.5.1 Functional Versus Process Framep. 260
12.5.2 Number of DRFsp. 261
12.5.3 Location of the Fixturep. 263
12.5.4 Design of Datum Feature Simulatorsp. 264
12.6 Application Issuesp. 267
12.7 A Practical Examplep. 268
12.7.1 Traditional Processing of Partp. 270
12.7.2 Single-Setup Processing of Partp. 276
12.8 Summaryp. 279
Referencesp. 280
13 Does It All Work?p. 281
13.1 Introductionp. 281
13.2 The Initial Situationp. 282
13.3 Component Definitionp. 285
13.4 The Six-Step Processp. 286
13.5 The Resultsp. 294
14 Implementation and Process Improvementp. 297
14.1 Introductionp. 297
14.2 Why Focus on the Definition?p. 298
14.2.1 Management Toolp. 298
14.2.2 Communicationp. 298
14.2.3 Educationp. 299
14.2.4 Problem Solvingp. 299
14.2.5 A Benchmarkp. 300
14.3 Stages of Implementationp. 301
14.3.1 Audit Existing Design Processp. 301
14.3.2 Education in Documentation Principlesp. 303
14.3.3 Senior Management's Supportp. 304
14.3.4 Require a Structured Designp. 305
14.3.5 Core Implementation Groupp. 305
14.3.6 Training Issuesp. 305
14.3.7 Identification of an Advocatep. 306
14.3.8 Management Supportp. 307
14.3.9 Controlled Implementationp. 308
14.3.10 Upgrade Metrology/Inspection Capabilitiesp. 309
14.3.11 Review and Critiquep. 310
14.3.12 Expand Trainingp. 312
14.3.13 Require Usep. 313
14.4 Conclusionp. 313
Referencesp. 315
Indexp. 317