Cover image for Charge injection systems : phycical principles, experimental and theoretical work
Title:
Charge injection systems : phycical principles, experimental and theoretical work
Personal Author:
Series:
Heat and mass transfer
Publication Information:
Berlin : Springer Verlag, c2009
Physical Description:
x, 196 p. : ill. ; 25 cm.
ISBN:
9783642002939

9783642002946

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010256943 TJ785 S475 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

C Specific heat at constant pressure p D Displacement field D Diffusion coefficient d D Orifice diameter E Electric field E Electron charge F Force G Acceleration due to gravity I Current J Current flux K Conductivity k Boltzmann constant B L Atomizer geometry: length from electrode tip to orifice plane i L Atomizer geometry : length of orifice channel o P Polarization Q Flow rate/Heat flux Q Charge r Atomizer geometry : electrode tip radius p T Time T Temperature U Velocity V Voltage W Energy X Distance Nomenclature (Greek) Thermal expansion coefficient ? Permittivity ? Permutation operator ? ijk Ion mobility ? VI Nomenclature Debye length ? D ? Dynamic viscosity ? Mass density Surface tension ? T Electrical conductivity ? ? Timescale ? Vorticity Nomenclature (Subscripts) Reference state ? o Cartesian tensor notation ? ijk Volume density (? per unit volume) ? v Surface density (? per unit area) ? s Linear density (? per unit length) ? l 'critical' state ? c Bulk mean injection ? inj Nomenclature (Superscripts) Time or ensemble averaged ? Contents Contents 1 Introduction................................................................... 1 1.1 Introduction and Scope.................................................. 1 1.2 Organization.............................................................. 3 2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instability.................................................................. 5 2.1 Electrostatics.............................................................. 5 2.1.1 The Coulomb Force............................................. 5 2.1.2 Permittivity...................................................... 6 2.1.3 Conductors, Insulators, Dielectrics and Polarization........ 6 2.1.4 Gauss'sLaw...................................................... 8 2.2 Mobility and Charge Transport........................................ 10 2.2.1 Introduction...................................................... 10


Table of Contents

1 Introductionp. 1
1.1 Introduction and Scopep. 1
1.2 Organizationp. 3
2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instabilityp. 5
2.1 Electrostaticsp. 5
2.1.1 The Coulomb Forcep. 5
2.1.2 Permittivityp. 6
2.1.3 Conductors, Insulators, Dielectrics and Polarizationp. 6
2.1.4 Gauss's Lawp. 8
2.2 Mobility and Charge Transportp. 10
2.2.1 Introductionp. 10
2.2.2 Convective Transport by Fluid Motionp. 10
2.2.3 Mobility and the Drift Termp. 10
2.2.4 Diffusion and the Debye Lengthp. 11
2.2.5 Charge Conservationp. 12
2.3 Momentum and Energyp. 13
2.3.1 Introductionp. 13
2.3.2 Electrical Forcesp. 13
2.3.3 Momentum Conservationp. 14
2.3.4 Energy Conservationp. 14
2.4 Electrical Timescalesp. 15
2.4.1 Introductionp. 15
2.4.2 Ohmic-Charge Relaxationp. 15
2.4.3 Space-Charge Relaxationp. 15
2.4.4 Ionic Diffusion Timescalep. 16
2.4.5 Ionic Transit Timescalep. 16
2.4.6 Electro-viscous Timescalep. 17
2.4.7 Electro-inertial Timescalep. 17
2.5 Non-dimensional Transport Equationsp. 17
2.5.1 Introductionp. 17
2.5.2 Momentum Conservation: Free Flowp. 18
2.5.3 Momentum Conservation: Forced Flowp. 19
2.5.4 Non-dimensional Parametersp. 19
2.6 Electrohydrodynamicsp. 21
2.6.1 Introductionp. 21
2.6.2 Fundamentalsp. 22
2.6.3 Instabilityp. 22
2.6.4 Plumesp. 26
2.6.5 Transition to Turbulencep. 29
2.7 Electrohydrodynamic Turbulence in a Propagating Flow Frontp. 30
2.7.1 EHD Vorticityp. 30
2.7.2 EHD RANS in a Propagating Flow Frontp. 31
2.7.3 Transient Turbulencep. 32
2.7.4 AC Turbulencep. 33
2.7.5 Current and Voltagep. 33
2.8 Chapter Summaryp. 35
3 Charge Injection into a Quiescent Dielectric Liquidp. 37
3.1 Charge and Field Distributionp. 37
3.1.1 Field Emission and Ionizationp. 37
3.1.2 Electrochemicalp. 38
3.1.3 Ohmic Conductionp. 39
3.1.4 Space-Chargep. 39
3.1.5 Point Sharpnessp. 39
3.1.6 Hyperbolic Field Expressionp. 40
3.2 IV Characteristics of Point-Plane Systemsp. 40
3.2.1 Steady-State Behaviorp. 40
3.2.2 Current Instabilitiesp. 44
3.3 Vapor Bubble Creation and Pressure Dependence in Liquidsp. 49
3.3.1 Vapor Bubble Formationp. 49
3.3.2 Vapor Bubble Growth: Pulsed Voltage Operationp. 51
3.3.3 Vapor Bubble Growth: Constant Voltagep. 52
3.3.4 Vapor Bubble Evolutionp. 58
3.4 Chapter Summaryp. 60
4 Single Charged Drop Stability, Evaporation and Combustionp. 61
4.1 Maximum Spherical Drop Chargep. 61
4.2 Maximum Spheroidal Drop Chargep. 69
4.3 Spheroidal Deformation of Non-stationary Charged Dropsp. 70
4.4 Models for Products of Charged Drop Disruptionp. 72
4.5 Combustion of Single Dropsp. 76
4.6 Summaryp. 77
5 Charge Injection Atomizers: Design and Electrical Performancep. 79
5.1 Overview: Electrostatic Atomization for Electrically Semi-conducting Liquidsp. 79
5.2 Overview: Electrostatic Atomization for Electrically Insulating Liquidsp. 81
5.3 Atomizer Constructionp. 82
5.4 Nozzle Designp. 84
5.5 Rig Designp. 85
5.6 Liquids Usedp. 86
5.7 Breakdown Limits and Typical Current-Voltage Responsep. 87
5.7.1 Sub-critical Breakdownp. 87
5.7.2 Super-critical Breakdownp. 91
5.7.3 Overview of the Breakdown Regimesp. 94
5.8 Total Current Versus Voltage: Observationsp. 94
5.9 Total Current Versus Voltage: Comparison to Quiescent Fluid Datap. 96
5.10 Effect of Flow-Rate/Injection Velocityp. 100
5.11 Specific Charge Regimesp. 101
5.12 Specific Charge: Summaryp. 106
5.13 Variation of Electrode Gap Ratio (L i /d), L 0 /d=2, d=500¿m, Version 1 Designp. 107
5.14 Variation of d: Version 1 Design: Constant Q, L i , L 0 /dp. 110
5.15 Variation of Electrode Gap Ratio (L i /d): Version 2 Design, d=500¿mp. 112
5.16 Variation of Electrode Gap Ratio (L i /d): Version 2 Design, d=250¿mp. 114
5.17 Performance Evaluation: Version 1 and Version 2p. 116
5.18 Point-Plane Atomizer Design Modificationsp. 117
5.19 Beyond the Point-Plane Atomizer Conceptp. 121
5.19.1 Single Hole Electrostatically Enhanced Pressure Swirl Atomizersp. 121
5.19.2 Multi-hole Charge Injection Atomizersp. 122
5.19.3 Pulsed Spray Charge Injection Atomizersp. 122
5.19.4 Other Developments within Charge Injection Atomizationp. 123
5.20 Chapter Summaryp. 123
6 Jet Instability and Primary Atomizationp. 125
6.1 Measured Characteristicsp. 125
6.2 Orifice Channel Space Charge Distribution Modelp. 132
6.3 Chapter Summaryp. 137
7 Spray Characterization and Combusionp. 139
7.1 Spray Visualization and Prediction of Expansion Ratep. 139
7.2 Quantitative Spray Characteristicsp. 146
7.3 Estimation of the Radial Profile of Spray Specific Chargep. 154
7.4 Models for Drop Diameter and Charge Distributionsp. 160
7.4.1 Energy Minimization Methodsp. 160
7.4.2 Spray Theory of Kellyp. 163
7.4.2.1 Correlations and Simplificationsp. 167
7.2.4.2 Analysis of the Lagrangian Multipliersp. 169
7.4.2.3 Energy Considerationsp. 172
7.4.2.4 Performance of Kelly's Modelp. 172
7.5 Spray Combustionp. 173
7.6 Summaryp. 178
8 Conclusions and Future Outlookp. 181
8.1 Conclusionsp. 181
8.2 Future Outlookp. 183
Referencesp. 185
Indexp. 195