Cover image for Interaction of radiation with matter
Title:
Interaction of radiation with matter
Personal Author:
Publication Information:
Boca Raton, FL. : Taylor & Francis, 2012.
Physical Description:
xv, 348 p. : ill. ; 25 cm.
ISBN:
9781439853573
Abstract:
"Written for students approaching the subject for the first time, this text provides a solid grounding in the physics of the interactions of photons and particles with matter, which is the basis of radiological physics and radiation dosimetry. The authors first present the relevant atomic physics and then describe the interactions, emphasizing practical applications in health/medical physics and radiation biology. They cover such important topics as microdosimetry, interaction of photons with matter, electron energy loss, and dielectric response. Each chapter includes exercises and a summary"-- Provided by publisher.

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010297644 QC793.3.T67 N55 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Interaction of Radiation with Matter focuses on the physics of the interactions of ionizing radiation in living matter and the Monte Carlo simulation of radiation tracks. Clearly progressing from an elementary level to the state of the art, the text explores the classical physics of track description as well as modern aspects based on condensed matter physics.

The first section of the book discusses the fundamentals of the radiation field. In the second section, the authors describe the cross sections for electrons and heavy ions--the most important information needed for simulating radiation track at the molecular level. The third section details the inelastic scattering and energy loss of charged particles in condensed media, particularly liquid water. The final section contains a large number of questions and problems to reinforce learning.

Designed for radiation interaction courses, this textbook is the ideal platform for teaching students in medical/health physics and nuclear engineering. It gives students a solid grounding in the physical understanding of radiation track structure in living matter, enabling them to pursue further work in radiological physics and radiation dosimetry.


Author Notes

Hooshang Nikjoo is a professor of radiation biophysics in the Department of Oncology-Pathology at the Karolinska Institutet. His research interests encompass computational approaches in molecular radiation biology, including Monte Carlo track structure methods, modeling DNA damage and repair, and a genome-based framework to estimate radiation risk in humans.

Shuzo Uehara is an emeritus professor of physics in the School of Health Sciences at Kyushu University. His research interests include Monte Carlo simulation of ionizing radiation and its application to medicine and biology.

Dimitris Emfietzoglou is an assistant professor in the Medical Physics Laboratory at the University of Ioannina Medical School. His research interests include the interaction of ionizing radiation with biomaterials and nanostructures and Monte Carlo particle transport simulation.


Table of Contents

Prefacep. xiii
About the Authorsp. xv
Section I
1 Introductionp. 3
1.1 Radiation Transport Codesp. 5
1.1.1 Amorphous Track Codesp. 8
1.1.2 Condensed History Monte Carlo (CHMC) Codesp. 8
1.1.3 3D and 4D Monte Carlo Track Structure Codesp. 10
Questionsp. 11
Referencesp. 11
2 Basic Knowledge of Radiationp. 15
2.1 Definitions of Radiationp. 15
2.2 Electron Voltp. 16
2.3 Special Theory of Relativityp. 17
2.4 Electromagnetic Wave and Photonp. 19
2.5 Interaction Cross Sectionsp. 21
2.6 Quantities and Units of Radiationp. 24
2.6.1 Relevant to Radiation Fieldsp. 24
2.6.2 Relevant to Interactionsp. 25
2.6.2.1 Cross Section (¿)p. 25
2.6.2.2 Mass Attenuation Coefficient (¿/¿)p. 25
2.6.2.3 Mass Energy Transfer Coefficient (¿ tr /¿)p. 26
2.6.2.4 Mass Energy Absorption Coefficient (¿ en /¿)p. 26
2.6.2.5 Total Mass Stopping Power (S/¿)p. 26
2.6.2.6 LET (Linear Energy Transfer) or Restricted Linear Collision Stopping Power (L ¿ )p. 27
2.6.2.7 Radiation Chemical Yield (G)p. 27
2.6.2.8 Average Energy per Ion Pair (W)p. 27
2.6.3 Relevant to Dosesp. 27
2.6.3.1 Energy Imparted (¿)p. 27
2.6.3.2 Absorbed Dose (D)p. 28
2.6.3.3 Absorbed Dose Rate (D)p. 28
2.6.3.4 Kerma (K)p. 28
2.6.3.5 Kerma Rate (K)p. 29
2.6.3.6 Exposure (X)p. 29
2.6.3.7 Exposure Rate (X)p. 29
2.6.4 Relevant to Radioactivitiesp. 29
2.6.4.1 Decay Constant (¿)p. 29
2.6.4.2 Activity (A)p. 30
2.6.4.3 Air Kerma Rate Constant (¿ ¿ )p. 31
2.6.4.4 Exposure Rate Constant (¿ ¿ ′)p. 32
2.6.5 Relevant to Radiation Protectionp. 32
2.6.5.1 Dose Equivalent (H)p. 32
2.7 Summaryp. 33
Questionsp. 34
Referencesp. 34
For Further Readingp. 34
3 Atomsp. 35
3.1 Atomic Nature of Matterp. 35
3.2 Rutherford's Atomic Modelp. 36
3.3 Bohr's Quantum Theoryp. 37
3.4 Quantum Mechanicsp. 39
3.4.1 de Broglie Wave of Electronsp. 39
3.4.2 Uncertainty Principlep. 40
3.4.3 Schrödinger Equationp. 41
3.4.4 Wavefunctionp. 43
3.5 Atomic Structurep. 44
3.5.1 Electron Orbitp. 44
3.5.2 Pauli's Exclusion Principlep. 45
3.6 Summaryp. 46
Questionsp. 47
For Further Readingp. 47
4 Atomic Nucleusp. 49
4.1 Constituents of Nucleusp. 49
4.2 Binding Energy of Nucleusp. 49
4.3 Nuclear Modelsp. 51
4.3.1 Liquid Drop Modelp. 51
4.3.2 Shell Modelp. 52
4.3.3 Collective Modelp. 53
4.4 Nuclear Reactionp. 54
4.4.1 Characteristicsp. 54
4.4.2 Cross Sectionp. 55
4.4.3 Threshold Value of Reactionp. 56
4.5 Nuclear Fissionp. 57
4.6 Nuclear Fusionp. 58
4.7 Summaryp. 59
Questionsp. 60
For Further Readingp. 60
5 Radioactivityp. 61
5.1 Types of Radioactivityp. 61
5.1.1 ¿-Decayp. 61
5.1.2 ß- Decayp. 63
5.1.3 ¿-Decayp. 65
5.1.4 Internal Conversionp. 65
5.1.5 ß+ Decayp. 66
5.1.6 Electron Capturep. 67
5.1.7 Radiative and Nonradiative Transitionsp. 69
5.2 Formulas of Radioactive Decayp. 71
5.2.1 Attenuation Lawp. 71
5.2.2 Specific Activityp. 73
5.2.3 Radioactive Equilibriump. 73
5.2.3.1 Secular Equilibriump. 73
5.2.3.2 General Formulap. 74
5.2.3.3 Transient Equilibriump. 74
5.2.3.4 Nonequilibriump. 75
5.3 Summaryp. 75
Questionsp. 75
Referencesp. 76
For Further Readingp. 76
6 X-Raysp. 77
6.1 Generation of X-Raysp. 77
6.2 Continuous X-Raysp. 79
6.3 Characteristic X-Raysp. 80
6.4 Auger Electronsp. 81
6.5 Synchrotron Radiationp. 82
6.6 Diffraction by Crystalp. 84
6.7 Summaryp. 86
Questionsp. 87
For Further Readingp. 87
7 Interaction of Photons with Matterp. 89
7.1 Types of Interactionp. 89
7.1.1 Thomson Scatteringp. 89
7.1.2 Photoelectric Effectp. 89
7.1.3 Compton Scatteringp. 90
7.1.4 Pair Creationp. 92
7.1.5 Photonuclear Reactionp. 93
7.2 Attenuation Coefficientsp. 94
7.3 Half-Value Layer of X-Raysp. 96
7.4 Mass Energy Absorption Coefficientsp. 98
7.5 Summaryp. 101
Questionsp. 102
For Further Readingp. 102
8 Interaction of Electrons with Matterp. 103
8.1 Energy Loss of Charged Particlesp. 103
8.2 Collision Stopping Powerp. 105
8.3 Radiative Stopping Powerp. 108
8.4 Rangesp. 110
8.5 Multiple Scatteringp. 112
8.6 Cerenkov Radiationp. 115
8.7 Summaryp. 117
Questionsp. 117
For Further Readingp. 118
9 Interaction of Heavy Charged Particles with Matterp. 119
9.1 Collision Stopping Powersp. 119
9.2 Nuclear Stopping Powersp. 123
9.3 Rangesp. 126
9.4 Straggling of Energy Loss and Rangep. 128
9.5 Summaryp. 129
Questionsp. 130
Referencesp. 130
For Further Readingp. 130
10 ¿-Ray, Restricted Stopping Power, and LETp. 131
10.1 ¿-Rayp. 131
10.2 Restricted Stopping Powerp. 132
10.3 LETp. 135
10.4 Summaryp. 136
Questionsp. 136
Referencesp. 136
11 Introduction to Monte Carlo Simulationp. 137
11.1 Monte Carlo Methodp. 137
11.2 Sampling of Reaction Pointp. 137
11.3 Condensed History Techniquep. 141
11.4 Slowing Down of Electronsp. 146
11.5 Conversion of Anglesp. 147
11.6 Intersection at Boundaryp. 148
11.7 Summaryp. 150
Questionsp. 151
Referencesp. 151
Section II
12 Cross Sections for Interactions of Photons with Matterp. 155
12.1 Coherent Scatteringp. 155
12.2 Photoelectric Effectp. 157
12.3 Incoherent Scatteringp. 158
12.4 Pair Creationp. 162
12.5 Soft X-Raysp. 166
12.6 Summaryp. 170
Questionsp. 170
Referencesp. 171
13 Cross Sections for Interactions of Electrons with Waterp. 173
13.1 Ionizationp. 173
13.1.1 Secondary Electronsp. 173
13.1.2 Total Cross Sectionsp. 179
13.2 Excitationp. 181
13.3 Elastic Scatteringp. 184
13.4 Stopping Powersp. 186
13.5 Summaryp. 187
Questionsp. 188
Referencesp. 188
14 Cross Sections for Interactions of Low-Energy Protons (p. 191
14.1 Ionizationp. 191
14.1.1 Secondary Electronsp. 191
14.1.2 Total Cross Sectionsp. 195
14.2 Excitationp. 197
14.3 Elastic Scatteringp. 197
14.4 Charge Transferp. 201
14.5 Stopping Powersp. 202
14.5.1 Electronic Stopping Powersp. 202
14.5.2 Nuclear Stopping Powersp. 209
14.6 Summaryp. 209
Questionsp. 210
Referencesp. 210
15 Cross Sections for Interactions of Low Energy ¿-Particles (p. 213
15.1 Ionizationp. 213
15.1.1 Secondary Electronsp. 213
15.1.2 Total Cross Sectionsp. 214
15.2 Excitationp. 217
15.3 Elastic Scatteringp. 218
15.4 Charge Transferp. 219
15.5 Stopping Powersp. 221
15.5.1 Electronic Stopping Powersp. 221
15.6 Summaryp. 225
Questionsp. 225
Referencesp. 226
16 Cross Sections for Interactions of High-Energy Protons (> 1 MeVu -1 ) in Waterp. 227
16.1 Ionizationp. 227
16.1.1 Secondary Electronsp. 227
16.1.2 Total Cross Sectionsp. 230
16.2 Excitationp. 231
16.3 Elastic Scatteringp. 231
16.4 Summaryp. 232
Questionsp. 233
Referencesp. 233
17 Model Calculations Using Track Structure Data of Electronsp. 235
17.1 Ranges and W Valuesp. 235
17.2 Depth-Dose Distributionsp. 235
17.3 Electron Slowing Down Spectrap. 237
17.4 Summaryp. 241
Referencesp. 241
18 Model Calculations Using Track Structure Data of Ionsp. 243
18.1 KURBUC Code System for Heavy Particlesp. 243
18.2 Ranges and W Valuesp. 243
18.3 Depth-Dose Distributionsp. 247
18.4 Radial Dose Distributionsp. 249
18.5 Restricted Stopping Powersp. 249
18.6 Summaryp. 251
Referencesp. 251
Section III
19 Inelastic Scattering of Charged Particles in Condensed Media: A Dielectric Theory Perspectivep. 255
19.1 Introductionp. 255
19.2 Formal Scattering Theory: The Problemp. 258
19.3 Born Approximationp. 260
19.3.1 Validity Rangep. 261
19.3.2 Dynamic Structure Factorp. 261
19.3.3 Oscillator Strengthp. 263
19.3.4 Dielectric Response Functionp. 266
19.3.5 Kramers-Krönig Relationsp. 270
19.3.6 Dielectric Formulationp. 270
19.4 Bethe Approximationp. 273
19.5 Electron Gas Theoryp. 275
19.5.1 Plasmonsp. 277
19.5.2 Drude Modelp. 280
19.5.3 Lindhard Modelp. 284
19.5.4 Landau Dampingp. 290
19.5.5 Mermin Modelp. 292
19.5.6 Plasmon Pole Approximationp. 295
19.5.7 Many-Body Local Field Correctionp. 298
19.5.8 Static Approximationp. 301
19.6 Optical Data Modelsp. 305
19.6.1 Optical Limitp. 305
19.6.2 Models Based on the Drude Dielectric Functionp. 311
19.6.2.1 OREC Versionp. 311
19.6.2.2 Ritchie-Howie Versionp. 313
19.6.2.3 Extension to Arbitrary qp. 315
19.6.3 Models Based on the Lindhard Dielectric Functionp. 317
19.6.3.1 Perm Modelp. 317
19.6.3.2 Ashley Modelp. 321
19.6.4 Models Based on the Mermin Dielectric Functionp. 322
19.6.5 Hybrid Modelsp. 323
19.6.5.1 Liljequist Modelp. 323
19.6.5.2 Two-Mode Modelp. 325
Referencesp. 327
Section IV
20 Questions and Problemsp. 333
Indexp. 341