Cover image for Watermarking systems engineering : enabling digital assets security and other applications
Title:
Watermarking systems engineering : enabling digital assets security and other applications
Personal Author:
Publication Information:
New York, NY : Marcel Dekker, 2004
ISBN:
9780824748067

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010082473 QA76.9.A25 B37 2004 Open Access Book Book
Searching...
Searching...
30000010134848 QA76.9.A25 B37 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

The rapid growth of the Internet has fueled the demand for enhanced watermarking and data hiding technologies and has stimulated research into new ways to implement watermarking systems in the real world. This book presents the fundamental principles of watermarking system design and discusses state-of-the-art technologies in information concealment and recovery. It highlights the requirements and challenges of applications in security, image/video indexing, hidden communications, image captioning, and transmission error recovery and concealment. It explains the foundations of digital watermarking technologies, and offers an understanding of new approaches and applications, and lays the groundwork for future developments in the field.


Author Notes

Franco Bartolini is Assistant Professor, Faculty of Engineering, University of Florence, Italy.


Table of Contents

Series introductionp. iii
Prefacep. v
1 Introductionp. 1
1.1 Elements of a watermarking systemp. 1
1.1.1 Information codingp. 3
1.1.2 Embeddingp. 3
1.1.3 Concealmentp. 5
1.1.4 Watermark impairmentsp. 6
1.1.5 Recovery of the hidden informationp. 6
1.2 Protocol considerationsp. 7
1.2.1 Capacity of watermarking techniquesp. 10
1.2.2 Multiple embeddingp. 11
1.2.3 Robustnessp. 12
1.2.4 Blind vs. non-blind recoveryp. 14
1.2.5 Private vs. public watermarkingp. 15
1.2.6 Readable vs. detectable watermarksp. 15
1.2.7 Invertibility and quasi-invertibilityp. 16
1.2.8 Reversibilityp. 18
1.2.9 Asymmetric watermarkingp. 18
1.3 Audio vs image vs video assetsp. 19
1.4 Further readingp. 20
2 Applicationsp. 23
2.1 IPR protectionp. 24
2.1.1 Demonstration of rightful ownershipp. 24
2.1.2 Fingerprintingp. 25
2.1.3 Copy controlp. 29
2.2 Authenticationp. 31
2.2.1 Cryptography vs watermarkingp. 31
2.2.2 A general authentication frameworkp. 33
2.2.3 Requirements of data-hiding-based authenticationp. 36
2.3 Data hiding for multimedia transmissionp. 37
2.3.1 Data compressionp. 37
2.3.2 Error recoveryp. 38
2.4 Annotation watermarksp. 40
2.4.1 Labelling for data retrievalp. 41
2.4.2 Bridging the gap between analog and digital objectsp. 41
2.5 Covert communicationsp. 42
2.6 Further readingp. 43
3 Information codingp. 45
3.1 Information coding in detectable watermarkingp. 47
3.1.1 Spread spectrum watermarkingp. 47
3.1.2 Orthogonal waveforms watermarkingp. 56
3.1.3 Orthogonal vs PN watermarkingp. 58
3.1.4 Self-synchronizing PN sequencesp. 62
3.1.5 Power spectrum shapingp. 63
3.1.6 Chaotic sequencesp. 65
3.1.7 Direct embeddingp. 68
3.2 Waveform-based readable watermarkingp. 69
3.2.1 Information coding through M-ary signalingp. 69
3.2.2 Position encodingp. 71
3.2.3 Binary signalingp. 72
3.3 Direct embedding readable watermarkingp. 75
3.3.1 Direct embedding binary signalling with bit repetitionp. 75
3.4 Channel codingp. 76
3.4.1 Block codesp. 77
3.4.2 Convolutional codesp. 79
3.4.3 Coding vs bit repetitionp. 81
3.4.4 Channel coding vs orthogonal signalingp. 83
3.4.5 Informed codingp. 83
3.5 Further readingp. 87
4 Data embeddingp. 91
4.1 Feature selectionp. 91
4.1.1 Watermarking in the asset domainp. 92
4.1.2 Watermarking in a transformed domainp. 96
4.1.3 Hybrid techniquesp. 102
4.1.4 Watermarking in the compressed domainp. 110
4.1.5 Miscellaneous non-conventional choices of the feature setp. 112
4.2 Blind embeddingp. 119
4.2.1 Additive watermarkingp. 119
4.2.2 Multiplicative watermarkingp. 126
4.3 Informed embeddingp. 129
4.3.1 Detectable watermarkingp. 135
4.3.2 Readable watermarkingp. 142
4.4 Further readingp. 153
5 Data concealmentp. 155
5.1 The Human Visual Systemp. 157
5.1.1 The Weber law and the contrastp. 160
5.1.2 The contrast sensitivity functionp. 161
5.1.3 The masking effectp. 167
5.1.4 Mapping luminance to imagesp. 170
5.1.5 Perception of color stimulip. 173
5.1.6 Perception of time-varying stimulip. 184
5.2 The Human Auditory System (HAS)p. 187
5.2.1 The masking effectp. 188
5.3 Concealment through feature selectionp. 190
5.4 Concealment through signal adaptationp. 192
5.4.1 Concealment through perceptual masksp. 192
5.4.2 Concealment relying on visibility thresholdsp. 198
5.4.3 Heuristic approaches for still imagesp. 201
5.4.4 A theoretically funded perceptual threshold for still imagesp. 205
5.4.5 MPEG-based concealment for audiop. 209
5.5 Application oriented concealmentp. 211
5.5.1 Video surveillance systemsp. 212
5.5.2 Remote sensing imagesp. 214
5.6 Further readingp. 215
6 Data recoveryp. 219
6.1 Watermark detectionp. 220
6.1.1 A hypothesis testing problemp. 221
6.1.2 AWGN channelp. 225
6.1.3 Additive / Generalized Gaussian channelp. 238
6.1.4 Signal dependent noise with host rejection at the embedderp. 242
6.1.5 Taking perceptual masking into accountp. 248
6.1.6 Multiplicative Gaussian channelp. 248
6.1.7 Multiplicative Weibull channelp. 259
6.1.8 Multichannel detectionp. 271
6.2 Decodingp. 272
6.2.1 General problem for binary signallingp. 273
6.2.2 Binary signaling through AWGN channelp. 275
6.2.3 Generalized Gaussian channelp. 279
6.2.4 Multiplicative watermarking with Gaussian noisep. 280
6.2.5 Multiplicative watermarking of Weibull-distributed featuresp. 285
6.2.6 Quantization Index Modulationp. 288
6.2.7 Decoding in the presence of channel codingp. 296
6.2.8 Assessment of watermark presencep. 299
6.3 Further readingp. 304
7 Watermark impairments and benchmarkingp. 307
7.1 Classification of attacksp. 308
7.2 Measuring obtrusiveness and attack strengthp. 310
7.3 Gaussian noise additionp. 312
7.3.1 Additive vs multiplicative watermarkingp. 312
7.3.2 Spread Spectrum vs QIM watermarkingp. 317
7.4 Conventional signal processingp. 325
7.4.1 The gain attackp. 326
7.4.2 Histogram equalizationp. 329
7.4.3 Filteringp. 331
7.5 Lossy codingp. 334
7.5.1 Quantization of the watermarked featuresp. 337
7.6 Geometric manipulationsp. 344
7.6.1 Asset translationp. 345
7.6.2 Asset zoomingp. 348
7.6.3 Image rotationp. 350
7.6.4 More complex geometric transformationsp. 353
7.6.5 Countermeasures against geometric manipulationsp. 354
7.7 Editingp. 362
7.8 Digital to analog and analog to digital conversionp. 364
7.9 Malicious attacksp. 365
7.10 Attack estimationp. 371
7.11 Benchmarkingp. 371
7.11.1 Early benchmarking systemsp. 372
7.11.2 StirMarkp. 374
7.11.3 Improving conventional systemsp. 378
7.11.4 A new benchmarking structurep. 381
7.12 Further readingp. 382
8 Security issuesp. 385
8.1 Security by obscurityp. 388
8.2 The symmetric casep. 389
8.3 The asymmetric casep. 394
8.4 Playing open cardsp. 401
8.5 Security based on protocol designp. 404
8.6 Further readingp. 406
9 An information theoretic perspectivep. 409
9.1 Some historical notesp. 411
9.2 The watermarking gamep. 412
9.2.1 The rules of the gamep. 413
9.2.2 Some selected resultsp. 416
9.2.3 Capacity under average distortion constraintsp. 420
9.3 The additive attack watermarking gamep. 421
9.3.1 Game definition and main resultsp. 421
9.3.2 Costa's writing on dirty paperp. 424
9.4 Lattice-based capacity-achieving watermarkingp. 427
9.5 Equi-energetic structured code-booksp. 432
9.6 Further readingp. 433
Bibliographyp. 435
Indexp. 457