Cover image for Nonlinear continuum mechanics for finite element analysis
Title:
Nonlinear continuum mechanics for finite element analysis
Personal Author:
Edition:
2nd ed
Publication Information:
Cambridge, UK : Cambridge University Press, 2008
Physical Description:
xx, 318 p. : ill. ; 26 cm.
ISBN:
9780521838702
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010178735 TA405 B66 2008 Open Access Book Book
Searching...
Searching...
30000010200070 TA405 B66 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Designing engineering components that make optimal use of materials requires consideration of the nonlinear characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, and this requires an understanding of both the theoretical background and associated computer solution techniques. By presenting both nonlinear continuum analysis and associated finite element techniques under one roof, Bonet and Wood provide, in this edition of this successful text, a complete, clear, and unified treatment of these important subjects. New chapters dealing with hyperelastic plastic behavior are included, and the authors have thoroughly updated the FLagSHyP program, freely accessible at www.flagshyp.com. Worked examples and exercises complete each chapter, making the text an essential resource for postgraduates studying nonlinear continuum mechanics. It is also ideal for those in industry requiring an appreciation of the way in which their computer simulation programs work.


Table of Contents

Prefacep. xv
1 Introductionp. 1
1.1 Nonlinear Computational Mechanicsp. 1
1.2 Simple Examples of Nonlinear Structural Behaviorp. 2
1.2.1 Cantileverp. 2
1.2.2 Columnp. 3
1.3 Nonlinear Strain Measuresp. 4
1.3.1 One-Dimensional Strain Measuresp. 5
1.3.2 Nonlinear Truss Examplep. 6
1.3.3 Continuum Strain Measuresp. 10
1.4 Directional Derivative, Linearization and Equation Solutionp. 13
1.4.1 Directional Derivativep. 14
1.4.2 Linearization and Solution of Nonlinear Algebraic Equationsp. 16
2 Mathematical Preliminariesp. 22
2.1 Introductionp. 22
2.2 Vector and Tensor Algebrap. 22
2.2.1 Vectorsp. 23
2.2.2 Second-Order Tensorsp. 28
2.2.3 Vector and Tensor Invariantsp. 37
2.2.4 Higher-Order Tensorsp. 41
2.3 Linearization and the Directional Derivativep. 47
2.3.1 One Degree of Freedomp. 48
2.3.2 General Solution to a Nonlinear Problemp. 49
2.3.3 Properties of the Directional Derivativep. 52
2.3.4 Examples of Linearizationp. 53
2.4 Tensor Analysisp. 57
2.4.1 The Gradient and Divergence Operatorsp. 58
2.4.2 Integration Theoremsp. 60
3 Analysis of Three-Dimensional Truss Structuresp. 63
3.1 Introductionp. 63
3.2 Kinematicsp. 65
3.2.1 Linearization of Geometrical Descriptorsp. 67
3.3 Internal Forces and Hyperelastic Constitutive Equationsp. 68
3.4 Nonlinear Equilibrium Equations and the Newton-Raphson Solutionp. 70
3.4.1 Equilibrium Equationsp. 70
3.4.2 Newton-Raphson Procedurep. 71
3.4.3 Tangent Elastic Stiffness Matrixp. 72
3.5 Elasto-Plastic Behaviorp. 74
3.5.1 Multiplicative Decomposition of the Stretchp. 74
3.5.2 Rate-independent Plasticityp. 76
3.5.3 Incremental Kinematicsp. 80
3.5.4 Time Integrationp. 83
3.5.5 Stress Update and Return Mappingp. 83
3.5.6 Algorithmic Tangent Modulusp. 86
3.5.7 Revised Newton-Raphson Procedurep. 88
3.6 Examplesp. 89
3.6.1 Inclined Axial Rodp. 89
3.6.2 Trussed Framep. 89
4 Kinematicsp. 94
4.1 Introductionp. 94
4.2 The Motionp. 94
4.3 Material and Spatial Descriptionsp. 95
4.4 Deformation Gradientp. 97
4.5 Strainp. 101
4.6 Polar Decompositionp. 105
4.7 Volume Changep. 110
4.8 Distortional Component of the Deformation Gradientp. 112
4.9 Area Changep. 115
4.10 Linearized Kinematicsp. 116
4.10.1 Linearized Deformation Gradientp. 116
4.10.2 Linearized Strainp. 117
4.10.3 Linearized Volume Changep. 118
4.11 Velocity and Material Time Derivativesp. 118
4.11.1 Velocityp. 118
4.11.2 Material Time Derivativep. 119
4.11.3 Directional Derivative and Time Ratesp. 120
4.11.4 Velocity Gradientp. 122
4.12 Rate of Deformationp. 122
4.13 Spin Tensorp. 125
4.14 Rate of Change of Volumep. 128
4.15 Superimposed Rigid Body Motions and Objectivityp. 130
5 Stress and Equilibriump. 134
5.1 Introductionp. 134
5.2 Cauchy Stress Tensorp. 134
5.2.1 Definitionp. 134
5.2.2 Stress Objectivityp. 138
5.3 Equilibriump. 139
5.3.1 Translational Equilibriump. 139
5.3.2 Rotational Equilibriump. 141
5.4 Principle of Virtual Workp. 142
5.5 Work Conjugacy and Alternative Stress Representationsp. 144
5.5.1 The Kirchhoff Stress Tensorp. 144
5.5.2 The First Piola-Kirchhoff Stress Tensorp. 145
5.5.3 The Second Piola-Kirchhoff Stress Tensorp. 148
5.5.4 Deviatoric and Pressure Componentsp. 151
5.6 Stress Ratesp. 152
6 Hyperelasticityp. 155
6.1 Introductionp. 155
6.2 Hyperelasticityp. 155
6.3 Elasticity Tensorp. 157
6.3.1 The Material or Lagrangian Elasticity Tensorp. 157
6.3.2 The Spatial or Eulerian Elasticity Tensorp. 158
6.4 Isotropic Hyperelasticityp. 160
6.4.1 Material Descriptionp. 160
6.4.2 Spatial Descriptionp. 161
6.4.3 Compressible Neo-Hookean Materialp. 162
6.5 Incompressible and Nearly Incompressible Materialsp. 166
6.5.1 Incompressible Elasticityp. 166
6.5.2 Incompressible Neo-Hookean Materialp. 169
6.5.3 Nearly Incompressible Hyperelastic Materialsp. 171
6.6 Isotropic Elasticity in Principal Directionsp. 174
6.6.1 Material Descriptionp. 174
6.6.2 Spatial Descriptionp. 175
6.6.3 Material Elasticity Tensorp. 176
6.6.4 Spatial Elasticity Tensorp. 178
6.6.5 A Simple Stretch-based Hyperelastic Materialp. 179
6.6.6 Nearly Incompressible Material in Principal Directionsp. 180
6.6.7 Plane Strain and Plane Stress Casesp. 183
6.6.8 Uniaxial Rod Casep. 184
7 Large Elasto-Plastic Deformationsp. 188
7.1 Introductionp. 188
7.2 The Multiplicative Decompositionp. 189
7.3 Rate Kinematicsp. 193
7.4 Rate-Independent Plasticityp. 197
7.5 Principal Directionsp. 200
7.6 Incremental Kinematicsp. 204
7.6.1 The Radial Return Mappingp. 207
7.6.2 Algorithmic Tangent Modulusp. 209
7.7 Two-Dimensional Casesp. 211
8 Linearized Equilibrium Equationsp. 216
8.1 Introductionp. 216
8.2 Linearization and Newton-Raphson Processp. 216
8.3 Lagrangian Linearized Internal Virtual Workp. 218
8.4 Eulerian Linearized Internal Virtual Workp. 219
8.5 Linearized External Virtual Workp. 221
8.5.1 Body Forcesp. 221
8.5.2 Surface Forcesp. 222
8.6 Variational Methods and Incompressibilityp. 224
8.6.1 Total Potential Energy and Equilibriump. 225
8.6.2 Lagrange Multiplier Approach to Incompressibilityp. 225
8.6.3 Penalty Methods for Incompressibilityp. 228
8.6.4 Hu-Washizu Variational Principle for Incompressibilityp. 229
8.6.5 Mean Dilatation Procedurep. 231
9 Discretization and Solutionp. 237
9.1 Introductionp. 237
9.2 Discretized Kinematicsp. 237
9.3 Discretized Equilibrium Equationsp. 242
9.3.1 General Derivationp. 242
9.3.2 Derivation in Matrix Notationp. 245
9.4 Discretization of the Linearized Equilibrium Equationsp. 247
9.4.1 Constitutive Component: Indicial Formp. 248
9.4.2 Constitutive Component: Matrix Formp. 249
9.4.3 Initial Stress Componentp. 251
9.4.4 External Force Componentp. 252
9.4.5 Tangent Matrixp. 254
9.5 Mean Dilatation Method for Incompressibilityp. 256
9.5.1 Implementation of the Mean Dilatation Methodp. 256
9.6 Newton-Raphson Iteration and Solution Procedurep. 258
9.6.1 Newton-Raphson Solution Algorithmp. 258
9.6.2 Line Search Methodp. 259
9.6.3 Arc-Length Methodp. 261
10 Computer Implementationp. 266
10.1 Introductionp. 266
10.2 User Instructionsp. 267
10.3 Output File Descriptionp. 273
10.4 Element Typesp. 276
10.5 Solver Detailsp. 277
10.6 Constitutive Equation Summaryp. 277
10.7 Program Structurep. 284
10.8 Main Routine flagshypp. 284
10.9 Routine elemtkp. 292
10.10 Routine radialrtnp. 298
10.11 Routine ksigmap. 299
10.12 Routine bpressp. 301
10.13 Examplesp. 302
10.13.1 Simple Patch Testp. 302
10.13.2 Nonlinear Trussp. 303
10.13.3 Strip With a Holep. 304
10.13.4 Plane Strain Nearly Incompressible Stripp. 305
10.13.5 Elasto-plastic Cantileverp. 306
10.14 Appendix: Dictionary of Main Variablesp. 308
Bibliographyp. 312
Indexp. 314