Cover image for Mathematically modelling the electrical activity of the heart : from cell to body surface and back again
Title:
Mathematically modelling the electrical activity of the heart : from cell to body surface and back again
Personal Author:
Publication Information:
New Jersey, NJ : World Scientific, 2005
ISBN:
9789812563736

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010103876 QP112.5.E46 P84 2005 Open Access Book Book
Searching...
Searching...
30000010100201 QP112.5.E46 P84 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad -- it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.


Table of Contents

Prefacep. vii
Forewordp. ix
1 Introductionp. 1
1.1 Backgroundp. 1
1.2 Aims and Target Audiencep. 4
1.3 Why Model?p. 5
1.4 Historical Perspectivesp. 9
1.5 Anatomy and Function of the Heartp. 18
1.5.1 Macroscopic Descriptionp. 18
1.5.2 Basic Cardiac Cellular Electrophysiologyp. 21
1.5.3 Cardiac Structure and Electrophysiologyp. 27
1.5.4 The Electrocardiogram (ECG)p. 30
1.5.5 Cardiac Contractionp. 35
1.6 Role of Mathematical Modelling in the Heartp. 36
1.7 Notationp. 40
1.8 Open Questions, Issues and Challengesp. 41
2 Geometric Modellingp. 43
2.1 Introductionp. 43
2.2 Finite Element Basis Functionsp. 45
2.2.1 Local Coordinate Systemp. 45
2.2.2 Linear Lagrange Basis Functionsp. 46
2.2.3 Quadratic Lagrange Basis Functionsp. 49
2.2.4 Basis Functions in Higher-Dimensionsp. 51
2.2.5 Cubic Hermite Basis Functionsp. 55
2.3 Fitting Techniquesp. 61
2.3.1 Data Projectionp. 61
2.3.2 Linear Field Fittingp. 63
2.3.3 Iterative Linear Field Fittingp. 64
2.3.3.1 Sobolev Smoothingp. 65
2.4 Geometric Modelsp. 68
2.4.1 Heart Modelsp. 68
2.4.2 Torso Modelsp. 71
2.4.3 Patient-Specific Modelsp. 71
2.5 Open Questions, Issues and Challengesp. 73
3 Cell Modellingp. 77
3.1 Introductionp. 77
3.1.1 Unitsp. 79
3.2 Biophysically-Based Modelsp. 81
3.2.1 Cell Membranep. 82
3.2.2 Hodgkin and Huxley (HH)p. 82
3.2.3 The Noble 1962 Modelp. 88
3.2.4 The Beeler-Reuter Model (BR)p. 91
3.2.5 The Beeler-Reuter-Drouhard-Roberge Model (BRDR)p. 97
3.2.6 The DiFrancesco-Noble Model (DFN)p. 101
3.2.7 The Luo-Rudy I Model (LRI)p. 107
3.2.8 The Luo-Rudy II Model (LRII)p. 116
3.2.9 The Noble, Varghese, Kohl and Noble Model (NVKN)p. 122
3.2.10 Biophysical Cell Model Summaryp. 128
3.3 Simplified Models of Cardiac Myocytesp. 131
3.3.1 Polynomial Modelp. 131
3.3.2 FitzHugh-Nagumo Modelp. 132
3.3.3 Rogers-Modified FitzHugh-Nagumo Modelp. 133
3.3.4 van Capelle-Durrer Modelp. 136
3.3.5 Fenton-Karma Model (FK)p. 137
3.4 Solution of Cell Modelsp. 142
3.5 CellMLp. 146
3.6 Open Questions, Issues and Challengesp. 147
4 Tissue Modellingp. 151
4.1 Introductionp. 151
4.2 Tissue Structurep. 152
4.3 Modelling Electrical Activityp. 154
4.3.1 The Cable Modelp. 154
4.3.2 The Bidomain Modelp. 159
4.4 Numerical Solution Techniquesp. 166
4.5 Finite Element-Derived Finite Difference Methodp. 166
4.5.1 Domain Metricsp. 167
4.5.2 Describing the Microstructurep. 172
4.5.3 Expressing the Laplacian Termsp. 174
4.5.4 Numerical Approximationsp. 176
4.5.5 Evaluation of the Bidomain Laplacian Coefficientsp. 179
4.5.6 Element Branchingp. 183
4.5.7 Bidomain Boundary Conditionsp. 184
4.5.8 Implicit and Explicit Formulationsp. 186
4.5.9 Deformationp. 188
4.6 Alternative Solution Techniquesp. 188
4.6.1 Finite Difference Solution of the Bidomain Equationsp. 189
4.6.2 Finite Element Solution of the Bidomain Equationsp. 191
4.6.3 Finite Volume Solution of the Bidomain Equationsp. 195
4.7 Testing the Solution Methodp. 196
4.7.1 The Laplacian Operatorp. 196
4.7.2 One-Dimensional Propagationp. 199
4.7.3 Deforming Fibrep. 202
4.7.4 Three-Dimensional Isotropic Propagationp. 203
4.7.5 Anisotropic Three-Dimensional Propagationp. 205
4.8 Examples of Tissue Excitationp. 206
4.8.1 Excitation in Two Dimensionsp. 207
4.8.2 Excitation in Three Dimensionsp. 213
4.9 General Commentsp. 219
4.10 Open Questions, Issues and Challengesp. 221
5 Whole-Heart Modellingp. 223
5.1 Introductionp. 223
5.2 Equivalent Source Modelsp. 224
5.3 Empirical Modelsp. 225
5.4 Bidomain Modelsp. 228
5.5 Tissue Typesp. 231
5.6 Illustrative Examplesp. 231
5.6.1 Ventricular Excitationp. 232
5.6.2 Atrial Excitationp. 234
5.7 Open Questions, Issues and Challengesp. 236
6 Organ in the Body - The Forward Problem of Electrocardiologyp. 239
6.1 Introductionp. 239
6.2 The Electrocardiogramp. 240
6.3 Electrical Activity in the Torsop. 245
6.3.1 Torso Boundary Conditionsp. 247
6.3.2 Summary of the Integrated Modelp. 248
6.4 Geometric Torso Modelp. 249
6.5 Torso Solution - The Finite Element Method (FEM)p. 250
6.5.1 Gaussian Quadraturep. 257
6.5.2 Analytic Test Problemp. 259
6.6 Torso Solution - The Boundary Element Method (BEM)p. 260
6.6.1 Numerical Solution Procedures for the Boundary Integral Equationp. 268
6.6.2 Numerical Evaluation of Coefficient Integralsp. 270
6.6.3 Conductivity Tensorp. 274
6.6.4 The Derivative BEMp. 275
6.6.4.1 Fundamental Solution Derivativesp. 276
6.6.4.2 Derivative Boundary Element Identitiesp. 276
6.6.4.3 Singularity on the Domain Boundaryp. 277
6.6.4.4 Discretisationp. 283
6.6.4.5 Conductivity Tensorp. 287
6.6.5 Source Termsp. 288
6.6.6 Accuracy and Computational Efficiencyp. 292
6.7 From Cell to Body Surfacep. 296
6.7.1 Common Approachesp. 297
6.7.2 Dipole Source Calculationp. 298
6.7.3 Coupled and Uncoupled Solutionsp. 299
6.7.4 Coupling Approachesp. 300
6.7.4.1 Boundary Iteration Methodp. 301
6.7.4.2 Direct Assemblyp. 304
6.7.5 Two-Dimensional Fully-Coupled Forward Simulationsp. 308
6.8 Three-Dimensional Torso Simulationsp. 316
6.8.1 Dipole from Experimental Recordingsp. 317
6.8.2 Dipoles from Cellular Current Densityp. 320
6.8.3 Solution Visualisationp. 321
6.9 Open Questions, Issues and Challengesp. 326
7 The Inverse Problem of Electrocardiologyp. 329
7.1 Introductionp. 329
7.2 The Inverse Problemp. 332
7.3 Transfer Matricesp. 333
7.4 Singular Value Decomposition (SVD)p. 339
7.5 Potential-based Inverse Algorithmsp. 340
7.5.1 Tikhonov Regularisationp. 342
7.5.2 Truncated SVD (TSVD)p. 343
7.5.3 Greensite Potential-Based Inversep. 345
7.6 Activation-based Inverse Algorithmp. 347
7.7 Determining the Regularisation Parametersp. 354
7.7.1 Optimal Criterionp. 354
7.7.2 L-Curve Criterionp. 355
7.7.3 CRESO Criterionp. 356
7.7.4 Zero-Crossing Criterionp. 357
7.8 Validation Approachesp. 357
7.8.1 Simulation Studiesp. 357
7.8.2 Experimental Validationp. 364
7.9 Modelling Aspectsp. 369
7.10 The Outlookp. 371
7.11 Open Questions, Issues and Challengesp. 372
8 Modelling Other Cardiac Processesp. 375
8.1 Ventricular Mechanicsp. 375
8.2 Electro-mechanicsp. 378
8.3 Ventricular Blood Flowp. 378
8.4 Coronary Blood Flowp. 381
8.5 Ischaemiap. 383
8.6 Re-entry and Cardiac Arrhythmiasp. 383
8.7 Re-entry and Mechanicsp. 388
8.8 The Future of Cardiac Modellingp. 388
8.9 Open Questions, Issues and Challengesp. 390
Appendix A Finite Element Examplep. 393
A.1 Element Stiffness Matrixp. 394
A.2 Global Stiffness Matrixp. 395
A.3 Boundary Conditionsp. 396
A.4 Irregular Geometriesp. 397
Bibliographyp. 399
Indexp. 417