Cover image for Cosmology : the origin and evolution of cosmic structure
Title:
Cosmology : the origin and evolution of cosmic structure
Personal Author:
Publication Information:
New York : John Wiley & Sons, 2002
ISBN:
9780471489092
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004809962 QB981 C64 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

This is the 2nd edition of a highly successful title on this fascinating and complex subject. Concentrating primarily on the theory behind the origin and the evolution of the universe, and where appropriate relating it to observation, the new features of the this addition include: An overall introduction to the book Two new chapters: Gravitational Lensing and Gravitational Waves Each part has a collection of exercises with solutions to numerical parts at the end of the book Contains a table of physical constants The addition of a consolidated bibilography


Author Notes

Peter Coles was born in 1963. He received his undergraduate degree from the University of Cambridge and his doctorate from the University of Sussex. He is a professor of Astrophysics at Cardiff University. His primary subject of interest is Cosmology and he has written numerous books on the subject.

(Bowker Author Biography)


Reviews 1

Choice Review

The publisher's blurb describes this book well: "[It provides] a unique bridge between introductory and advanced material. It is accessible to advanced undergraduates and beginning postgraduates, but also contains a wealth of material which will be of great interest to more established researchers in the field." Coles and Lucchin overview different models of the universe and discuss the big bang and the origin of structure in the universe in great detail. At the end, they compare these theories with observational data in an unusually thoughtful manner for a book devoted primarily to theory. The writing is clear, authoritative, and concise, and there is a good list of references. The book would have been even more valuable if it had included problems and more illustrations. Recommended for libraries supporting astronomy programs at the upper-division undergraduate level and higher. T. Barker Wheaton College (MA)


Table of Contents

Preface to First Editionp. xi
Preface to Second Editionp. xix
Part 1 Cosmological Modelsp. 1
1 First Principlesp. 3
1.1 The Cosmological Principlep. 3
1.2 Fundamentals of General Relativityp. 6
1.3 The Robertson-Walker Metricp. 9
1.4 The Hubble Lawp. 13
1.5 Redshiftp. 16
1.6 The Deceleration Parameterp. 17
1.7 Cosmological Distancesp. 18
1.8 The m-z and N-z Relationsp. 20
1.9 Olbers' Paradoxp. 22
1.10 The Friedmann Equationsp. 23
1.11 A Newtonian Approachp. 24
1.12 The Cosmological Constantp. 26
1.13 Friedmann Modelsp. 29
2 The Friedmann Modelsp. 33
2.1 Perfect Fluid Modelsp. 33
2.2 Flat Modelsp. 36
2.3 Curved Models: General Propertiesp. 38
2.3.1 Open modelsp. 39
2.3.2 Closed modelsp. 40
2.4 Dust Modelsp. 40
2.4.1 Open modelsp. 41
2.4.2 Closed modelsp. 41
2.4.3 General propertiesp. 42
2.5 Radiative Modelsp. 43
2.5.1 Open modelsp. 43
2.5.2 Closed modelsp. 44
2.5.3 General propertiesp. 44
2.6 Evolution of the Density Parameterp. 44
2.7 Cosmological Horizonsp. 45
2.8 Models with a Cosmological Constantp. 49
3 Alternative Cosmologiesp. 51
3.1 Anisotropic and Inhomogeneous Cosmologiesp. 52
3.1.1 The Bianchi modelsp. 52
3.1.2 Inhomogeneous modelsp. 55
3.2 The Steady-State Modelp. 57
3.3 The Dirac Theoryp. 59
3.4 Brans-Dicke Theoryp. 61
3.5 Variable Constantsp. 63
3.6 Hoyle-Narlikar (Conformal) Gravityp. 64
4 Observational Properties of the Universep. 67
4.1 Introductionp. 67
4.1.1 Unitsp. 67
4.1.2 Galaxiesp. 69
4.1.3 Active galaxies and quasarsp. 70
4.1.4 Galaxy clusteringp. 72
4.2 The Hubble Constantp. 75
4.3 The Distance Ladderp. 79
4.4 The Age of the Universep. 83
4.4.1 Theoryp. 83
4.4.2 Stellar and galactic agesp. 84
4.4.3 Nucleocosmochronologyp. 84
4.5 The Density of the Universep. 86
4.5.1 Contributions to the density parameterp. 86
4.5.2 Galaxiesp. 88
4.5.3 Clusters of galaxiesp. 89
4.6 Deviations from the Hubble Expansionp. 92
4.7 Classical Cosmologyp. 94
4.7.1 Standard candlesp. 95
4.7.2 Angular sizesp. 97
4.7.3 Number-countsp. 99
4.7.4 Summaryp. 100
4.8 The Cosmic Microwave Backgroundp. 100
Part 2 The Hot Big Bang Modelp. 107
5 Thermal History of the Hot Big Bang Modelp. 109
5.1 The Standard Hot Big Bangp. 109
5.2 Recombination and Decouplingp. 111
5.3 Matter-Radiation Equivalencep. 112
5.4 Thermal History of the Universep. 113
5.5 Radiation Entropy per Baryonp. 115
5.6 Timescales in the Standard Modelp. 116
6 The Very Early Universep. 119
6.1 The Big Bang Singularityp. 119
6.2 The Planck Timep. 122
6.3 The Planck Erap. 123
6.4 Quantum Cosmologyp. 126
6.5 String Cosmologyp. 128
7 Phase Transitions and Inflationp. 131
7.1 The Hot Big Bangp. 131
7.2 Fundamental Interactionsp. 133
7.3 Physics of Phase Transitionsp. 136
7.4 Cosmological Phase Transitionsp. 138
7.5 Problems of the Standard Modelp. 141
7.6 The Monopole Problemp. 143
7.7 The Cosmological Constant Problemp. 145
7.8 The Cosmological Horizon Problemp. 147
7.8.1 The problemp. 147
7.8.2 The inflationary solutionp. 149
7.9 The Cosmological Flatness Problemp. 152
7.9.1 The problemp. 152
7.9.2 The inflationary solutionp. 154
7.10 The Inflationary Universep. 156
7.11 Types of Inflationp. 160
7.11.1 Old inflationp. 160
7.11.2 New inflationp. 161
7.11.3 Chaotic inflationp. 161
7.11.4 Stochastic inflationp. 162
7.11.5 Open inflationp. 162
7.11.6 Other modelsp. 163
7.12 Successes and Problems of Inflationp. 163
7.13 The Anthropic Cosmological Principlep. 164
8 The Lepton Erap. 167
8.1 The Quark-Hadron Transitionp. 167
8.2 Chemical Potentialsp. 168
8.3 The Lepton Erap. 171
8.4 Neutrino Decouplingp. 172
8.5 The Cosmic Neutrino Backgroundp. 173
8.6 Cosmological Nucleosynthesisp. 176
8.6.1 General considerationsp. 176
8.6.2 The standard nucleosynthesis modelp. 177
8.6.3 The neutron-proton ratiop. 178
8.6.4 Nucleosynthesis of Heliump. 179
8.6.5 Other elementsp. 181
8.6.6 Observations: Helium 4p. 182
8.6.7 Observations: Deuteriump. 183
8.6.8 Helium 3p. 184
8.6.9 Lithium 7p. 185
8.6.10 Observations versus theoryp. 185
8.7 Non-standard Nucleosynthesisp. 186
9 The Plasma Erap. 191
9.1 The Radiative Erap. 191
9.2 The Plasma Epochp. 192
9.3 Hydrogen Recombinationp. 194
9.4 The Matter Erap. 195
9.5 Evolution of the CMB Spectrump. 197
Part 3 Theory of Structure Formationp. 203
10 Introduction to Jeans Theoryp. 205
10.1 Gravitational Instabilityp. 205
10.2 Jeans Theory for Collisional Fluidsp. 206
10.3 Jeans Instability in Collisionless Fluidsp. 210
10.4 History of Jeans Theory in Cosmologyp. 212
10.5 The Effect of Expansion: an Approximate Analysisp. 213
10.6 Newtonian Theory in a Dust Universep. 215
10.7 Solutions for the Flat Dust Casep. 218
10.8 The Growth Factorp. 219
10.9 Solution for Radiation-Dominated Universesp. 221
10.10 The Method of Autosolutionp. 223
10.11 The Meszaros Effectp. 225
10.12 Relativistic Solutionsp. 227
11 Gravitational Instability of Baryonic Matterp. 229
11.1 Introductionp. 229
11.2 Adiabatic and Isothermal Perturbationsp. 230
11.3 Evolution of the Sound Speed and Jeans Massp. 231
11.4 Evolution of the Horizon Massp. 233
11.5 Dissipation of Acoustic Wavesp. 234
11.6 Dissipation of Adiabatic Perturbationsp. 237
11.7 Radiation Dragp. 240
11.8 A Two-Fluid Modelp. 241
11.9 The Kinetic Approachp. 244
11.10 Summaryp. 248
12 Non-baryonic Matterp. 251
12.1 Introductionp. 251
12.2 The Boltzmann Equation for Cosmic Relicsp. 252
12.3 Hot Thermal Relicsp. 253
12.4 Cold Thermal Relicsp. 255
12.5 The Jeans Massp. 256
12.6 Implicationsp. 259
12.6.1 Hot Dark Matterp. 260
12.6.2 Cold Dark Matterp. 261
12.6.3 Summaryp. 262
13 Cosmological Perturbationsp. 263
13.1 Introductionp. 263
13.2 The Perturbation Spectrump. 264
13.3 The Mass Variancep. 266
13.3.1 Mass scales and filteringp. 266
13.3.2 Properties of the filtered fieldp. 268
13.3.3 Problems with filtersp. 270
13.4 Types of Primordial Spectrap. 271
13.5 Spectra at Horizon Crossingp. 275
13.6 Fluctuations from Inflationp. 276
13.7 Gaussian Density Perturbationsp. 279
13.8 Covariance Functionsp. 281
13.9 Non-Gaussian Fluctuations?p. 284
14 Nonlinear Evolutionp. 287
14.1 The Spherical 'Top-Hat' Collapsep. 287
14.2 The Zel'dovich Approximationp. 290
14.3 The Adhesion Modelp. 294
14.4 Self-similar Evolutionp. 296
14.4.1 A simple modelp. 296
14.4.2 Stable clusteringp. 299
14.4.3 Scaling of the power spectrump. 300
14.4.4 Commentsp. 301
14.5 The Mass Functionp. 301
14.6 N-Body Simulationsp. 304
14.6.1 Direct summationp. 305
14.6.2 Particle-mesh techniquesp. 306
14.6.3 Tree codesp. 309
14.6.4 Initial conditions and boundary effectsp. 309
14.7 Gas Physicsp. 310
14.7.1 Coolingp. 310
14.7.2 Numerical hydrodynamicsp. 312
14.8 Biased Galaxy Formationp. 314
14.9 Galaxy Formationp. 318
14.10 Commentsp. 321
15 Models of Structure Formationp. 323
15.1 Introductionp. 323
15.2 Historical Preludep. 324
15.3 Gravitational Instability in Briefp. 326
15.4 Primordial Density Fluctuationsp. 327
15.5 The Transfer Functionp. 328
15.6 Beyond Linear Theoryp. 330
15.7 Recipes for Structure Formationp. 331
15.8 Commentsp. 334
Part 4 Observational Testsp. 335
16 Statistics of Galaxy Clusteringp. 337
16.1 Introductionp. 337
16.2 Correlation Functionsp. 339
16.3 The Limber Equationp. 342
16.4 Correlation Functions: Resultsp. 344
16.4.1 Two-point correlationsp. 344
16.5 The Hierarchical Modelp. 346
16.5.1 Commentsp. 348
16.6 Cluster Correlations and Biasingp. 350
16.7 Counts in Cellsp. 352
16.8 The Power Spectrump. 355
16.9 Polyspectrap. 356
16.10 Percolation Analysisp. 359
16.11 Topologyp. 361
16.12 Commentsp. 365
17 The Cosmic Microwave Backgroundp. 367
17.1 Introductionp. 367
17.2 The Angular Power Spectrump. 368
17.3 The CMB Dipolep. 371
17.4 Large Angular Scalesp. 374
17.4.1 The Sachs-Wolfe effectp. 374
17.4.2 The COBE DMR experimentp. 377
17.4.3 Interpretation of the COBE resultsp. 379
17.5 Intermediate Scalesp. 380
17.6 Smaller Scales: Extrinsic Effectsp. 385
17.7 The Sunyaev-Zel'dovich Effectp. 389
17.8 Current Statusp. 391
18 Peculiar Motions of Galaxiesp. 393
18.1 Velocity Perturbationsp. 393
18.2 Velocity Correlationsp. 396
18.3 Bulk Flowsp. 398
18.4 Velocity-Density Reconstructionp. 400
18.5 Redshift-Space Distortionsp. 402
18.6 Implications for [Omegan subscript 0]p. 405
19 Gravitational Lensingp. 409
19.1 Historical Preludep. 409
19.2 Basic Gravitational Opticsp. 412
19.3 More Complicated Systemsp. 415
19.4 Applicationsp. 418
19.4.1 Microlensingp. 418
19.4.2 Multiple imagesp. 419
19.4.3 Arcs, arclets and cluster massesp. 420
19.4.4 Weak lensing by large-scale structurep. 421
19.4.5 The Hubble constantp. 422
19.5 Commentsp. 423
20 The High-Redshift Universep. 425
20.1 Introductionp. 425
20.2 Quasarsp. 426
20.3 The Intergalactic Medium (IGM)p. 428
20.3.1 Quasar spectrap. 428
20.3.2 The Gunn-Peterson testp. 428
20.3.3 Absorption line systemsp. 430
20.3.4 X-ray gas in clustersp. 432
20.3.5 Spectral distortions of the CMBp. 432
20.3.6 The X-ray backgroundp. 433
20.4 The Infrared Background and Dustp. 434
20.5 Number-counts Revisitedp. 437
20.6 Star and Galaxy Formationp. 438
20.7 Concluding Remarksp. 444
21 A Forward Lookp. 447
21.1 Introductionp. 447
21.2 General Observationsp. 448
21.3 X-rays and the Hot Universep. 449
21.4 The Apotheosis of Astrometry: GAIAp. 450
21.5 The Next Generation Space Telescope: NGSTp. 452
21.6 Extremely Large Telescopesp. 453
21.7 Far-IR and Submillimetre Views of the Early Universep. 454
21.8 The Cosmic Microwave Backgroundp. 456
21.9 The Square Kilometre Arrayp. 456
21.10 Gravitational Wavesp. 458
21.11 Sociology, Politics and Economicsp. 460
21.12 Conclusionsp. 461
Appendix A. Physical Constantsp. 463
Appendix B. Useful Astronomical Quantitiesp. 465
Appendix C. Particle Propertiesp. 467
Referencesp. 469
Indexp. 485