Cover image for Bayesian multiple target tracking
Title:
Bayesian multiple target tracking
Series:
Artech House radar library
Edition:
2nd edition
Physical Description:
xix, 293 p. : illustrations ; 24 cm.
ISBN:
9781608075539
General Note:
Previous edition: 1999.

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010335005 TK6580 S76 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters.


Author Notes

Lawrence D. Stone received his Ph.D. and MS in mathematics from Purdue University,

Stone is Chief Operating Officer at Metron, Inc.

050


Table of Contents

Preface to Second Editionp. xi
Introductionp. xiii
Acknowledgmentsp. xix
Chapter 1 Tracking Problemsp. 1
1.1 Description of Tracking Problemp. 1
1.1.1 Measurement and Motion Modelsp. 2
1.1.2 Estimationp. 2
1.1.3 Filtersp. 2
1.2 Example 1: Tracking a Surface Shipp. 5
1.2.1 Prior Distribution on Target Statep. 6
1.2.2 Motion Modelp. 6
1.2.3 Measurement Modelp. 8
1.2.4 Tracker Outputp. 8
1.3 Example 2: Bearings-Only Trackingp. 11
1.3.1 Description of Examplep. 12
1.3.2 Prior Distributionp. 13
1.3.3 Motion Modelp. 14
1.3.4 Measurement Modelp. 16
1.3.5 Particle Filter Descriptionp. 18
1.3.6 Commentsp. 20
1.3.7 Tracker Outputp. 20
1.4 Example 3: Periscope Detection and Trackingp. 23
1.4.1 Target Trackerp. 24
1.4.2 Examplep. 25
1.5 Example 4: Tracking Multiple Targetsp. 28
1.5.1 Soft Associationp. 29
1.6 Summaryp. 33
Referencesp. 38
Chapter 2 Bayesian Inference and Likelihood Functionsp. 39
2.1 The Case for Bayesian Inferencep. 40
2.1.1 Frequentist Point of Viewp. 40
2.1.2 Conditionalist Point of Viewp. 41
2.1.3 Bayesian Point of Viewp. 42
2.2 The Likelihood Function and Bayes' Theoremp. 44
2.2.1 The Likelihood Functionp. 45
2.2.2 Bayes' Theoremp. 46
2.2.3 Sequential Nature of Bayes' Theoremp. 46
2.3 Examples of Likelihood Functionsp. 47
2.3.1 A Gaussian Contact Modelp. 47
2.3.2 A Gaussian Bearing Error Modelp. 49
2.3.3 Combining Bearing and Contact Measurementsp. 50
2.3.4 Negative Informationp. 53
2.3.5 Positive Informationp. 56
2.3.6 Radar and Infrared Detectionp. 58
2.3.7 A Signal-Plus-Noise Modelp. 60
2.3.8 Summaryp. 63
Referencesp. 64
Chapter 3 Single Target Trackingp. 65
3.1 Bayesian Filteringp. 66
3.1.1 Recursive Bayesian Filteringp. 66
3.1.2 Prediction and Smoothingp. 73
3.1.3 Recursive Predictionp. 74
3.1.4 Recursive Smoothingp. 74
3.1.5 Batch Smoothingp. 77
3.1.6 Land Avoidancep. 77
3.2 Kalman Filteringp. 80
3.2.1 Discrete Kalman Filteringp. 81
3.2.2 Continuous-Discrete Kalman Filteringp. 86
3.2.3 Kalman Smoothingp. 93
3.3 Particle Filter Implementation of Nonlinear Filteringp. 97
3.3.1 Generating Particlesp. 98
3.3.2 Particle Filter Recursionp. 99
3.3.3 Resamplingp. 100
3.3.4 Perturbing Target Statesp. 101
3.3.5 Convergencep. 102
3.3.6 Outliersp. 103
3.3.7 Multiple Motion Modelsp. 104
3.3.8 High Dimensional State Spacesp. 105
3.4 Summaryp. 105
Referencesp. 105
Chapter 4 Classical Multiple Target Trackingp. 107
4.1 Multiple Target Trackingp. 109
4.1.1 Multiple Target Motion Modelp. 109
4.1.2 Multiple Target Likelihood Functionsp. 110
4.1.3 Bayesian Recursion for Multiple Targetsp. 112
4.2 Multiple Hypothesis Trackingp. 113
4.2.1 Contactsp. 113
4.2.2 Scansp. 115
4.2.3 Data Association Hypothesesp. 115
4.2.4 Scans and Scan Association Hypothesesp. 117
4.2.5 Multiple Hypothesis Tracking Decompositionp. 120
4.3 Independent Multiple Hypothesis Trackingp. 122
4.3.1 Conditionally Independent Association Likelihoodsp. 123
4.3.2 Scan Association Likelihood Function Examplep. 124
4.3.3 Independence Theoremp. 126
4.3.4 Independent MHT Recursionp. 129
4.4 Linear-Gaussian Multiple Hypothesis Trackingp. 130
4.4.1 MHT Recursion for Linear-Gaussian Casep. 131
4.4.2 Posterior Distributions and Association Probabilitiesp. 132
4.5 Nonlinear Joint Probabilistic Data Associationp. 135
4.5.1 Scan Association Hypothesesp. 136
4.5.2 Scan Association Probabilityp. 136
4.5.3 JPDA Posteriorp. 139
4.5.4 Allowing New Targets and Deleting Existing Onesp. 139
4.5.5 Particle Filter Implementationp. 140
4.5.6 Examplep. 141
4.6 Probabilistic Multiple Hypothesis Tracking (PMHT)p. 142
4.6.1 PMHT Assumptionsp. 143
4.6.2 Posterior Distribution on Associationsp. 146
4.6.3 Expectation Maximizationp. 147
4.6.4 Nonlinear PMHTp. 149
4.6.5 Linear-Gaussian PMHTp. 152
4.6.6 Proof (4.81)p. 153
4.7 Summaryp. 155
4.8 Notesp. 156
Referencesp. 159
Chapter 5 Multitarget Intensity Filtersp. 161
5.1 Point Process Model of Multitarget Statep. 163
5.1.1 Basic Properties of PPPsp. 164
5.1.2 Probability Distribution Function for a PPPp. 166
5.1.3 Superposition of Point Processesp. 166
5.1.4 Target Motion Processp. 167
5.1.5 Sensor Measurement Processp. 167
5.1.6 Thinning a Processp. 167
5.1.7 Augmented Spacesp. 168
5.2 Intensity Filterp. 169
5.2.1 Augmented State Space Modelingp. 169
5.2.2 Predicted Detected and Undetected Target Processesp. 170
5.2.3 Measurement Processp. 171
5.2.4 Bayes Posterior Point Process (Information Update)p. 172
5.2.5 PPP Approximationp. 173
5.2.6 Correlation Losses in the PPP Approximationp. 174
5.2.7 The iFilterp. 174
5.2.8 Transformations of PPPs are PPPsp. 175
5.3 Probability Hypothesis Density (PHD) Filterp. 178
5.4 PQF Approach to the iFilterp. 180
5.4.1 Brief Review of PGFsp. 181
5.4.2 The iFilter on Finite Gridsp. 185
5.4.3 Joint PGF of Gridded States and Histogram Datap. 185
5.4.4 Small Cell Size Limitsp. 194
5.5 Extended Target Filtersp. 197
5.6 Summaryp. 197
5.7 Notesp. 199
5.7.1 Other Topicsp. 199
5.7.2 Backgroundp. 200
Referencesp. 200
Chapter 6 Multiple Target Tracking Using Tracker-Generated Measurementsp. 203
6.1 Maximum A Posteriori Penalty Function Trackingp. 204
6.1.1 MAP-PF Formulationp. 205
6.1.2 Iterative Optimizationp. 209
6.1.3 Algorithmp. 212
6.1.4 Variationsp. 213
6.2 Particle Filter Implementationp. 215
6.3 Linear-Gaussian Implementationp. 216
6.4 Examplesp. 217
6.4.1 Modelp. 217
6.4.2 MAP-PF Implementationp. 221
6.4.3 JPDA Implementationp. 225
6.4.4 Summary of Examplesp. 227
6.5 Summaryp. 227
6.6 Notesp. 229
6.7 Sensor Array Observation Model and Signal Processingp. 230
6.7.1 Sensor Observation Modelp. 230
6.7.2 Array Signal Processingp. 232
6.7.3 Cramér-Rao Bound (CRB)p. 236
Referencesp. 237
Chapter 7 Likelihood Ratio Detection and Trackingp. 239
7.1 Basic Definitions and Relationsp. 240
7.1.1 Likelihood Ratiop. 242
7.1.2 Measurement Likelihood Ratiop. 242
7.2 Likelihood Ratio Recursionsp. 243
7.2.1 Simplified Likelihood Ratio Recursionp. 245
7.2.2 Log-Likelihood Ratiosp. 247
7.3 Declaring a Target Presentp. 247
7.3.1 Minimizing Bayes' Riskp. 248
7.3.2 Target Declaration at a Given Confidence Levelp. 249
7.3.3 Neyman-Pearson Criterion for Declarationp. 249
7.3.4 Track Before Detectp. 249
7.4 Low-SNR Examples of LRDTp. 250
7.4.1 Simple Examplep. 250
7.4.2 Periscope Detection Examplep. 257
7.5 Thresholded Data with High Clutter Ratep. 262
7.5.1 Measurement and False Alarm Modelp. 262
7.5.2 Multistage Sonar Examplep. 264
7.6 Grid-Based Implementationp. 269
7.6.1 Prior Likelihood Ratiop. 270
7.6.2 Motion Modelp. 270
7.6.3 Information Updatep. 272
7.7 Multiple Target Tracking Using LRDTp. 272
7.7.1 Local Property for Measurement Likelihood Ratiosp. 273
7.7.2 LRDT as Detector for a Multiple Target Trackerp. 274
7.8 iLRTp. 275
7.8.1 Particle Filter Implementation of Intensity Filteringp. 275
7.8.2 Target Detection and Track Estimationp. 278
7.8.3 Examplep. 279
7.9 Summaryp. 282
7.10 Notesp. 283
Referencesp. 284
Appendixp. 285
About the Authorsp. 287
Indexp. 289