Cover image for Powder diffraction : theory and practice
Title:
Powder diffraction : theory and practice
Publication Information:
Cambridge,UK : Royal Society of Chemistry, 2008
Physical Description:
xxi, 582 p. : ill. (some col.) ; 24 cm.
ISBN:
9780854042319

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010160904 QC482.D5 P684 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Powder diffraction is a widely used scientific technique in the characterization of materials with broad application in materials science, chemistry, physics, geology, pharmacology and archaeology. Powder Diffraction: Theory and Practice provides an advanced introductory text about modern methods and applications of powder diffraction in research and industry. The authors begin with a brief overview of the basic theory of diffraction from crystals and powders. Data collection strategies are described including x-ray, neutron and electron diffraction setups using modern day apparatus including synchrotron sources. Data corrections, essential for quantitative analysis are covered before the authors conclude with a discussion of the analysis methods themselves. The information is presented in a way that facilitates understanding the information content of the data, as well as best practices for collecting and analyzing data for quantitative analysis. This long awaited book condenses the knowledge of renowned experts in the field into a single, authoritative, overview of the application of powder diffraction in modern materials research. The book contains essential theory and introductory material for students and researchers wishing to learn how to apply the frontier methods of powder diffraction


Table of Contents

Chapter 1 Principles of Powder DiffractionRobert E. Dinnebier and Simon J. L. Billinge
1.1 Introductionp. 1
1.2 Fundamentalsp. 1
1.3 Derivation of the Bragg Equationp. 3
1.4 The Bragg Equation in the Reciprocal Latticep. 6
1.5 The Ewald Constructionp. 11
1.6 Taking Derivatives of the Bragg Equationp. 15
1.7 Bragg's Law for Finite Size Crystallitesp. 17
Bibliographyp. 19
Chapter 2 Experimental SetupsJeremy Karl Cockcroft and Andrew N. Fitch
2.1 Introductionp. 20
2.2 Sources of X-ray Radiationp. 21
2.2.1 Laboratory X-ray Sourcesp. 21
2.2.2 Synchrotron X-ray Sourcesp. 25
2.3 X-ray Opticsp. 29
2.3.1 Filtersp. 29
2.3.2 Monochromatorsp. 29
2.3.3 Mirrorsp. 30
2.4 X-ray Detectorsp. 31
2.4.1 Point Detectorsp. 31
2.4.2 Linear Detectorsp. 31
2.4.3 Area Detectorsp. 32
2.4.4 Detector Calibrationp. 33
2.5 Laboratory Instrumental Configurationsp. 33
2.5.1 Reflection Geometryp. 33
2.5.2 Transmission Geometryp. 36
2.6 Synchrotron Instrumental Configurationsp. 37
2.6.1 Pre-sample Opticsp. 37
2.6.2 Parallel-beam Instrumentsp. 38
2.6.3 Debye-Scherrer Geometry Instrumentsp. 40
2.7 Measurementsp. 41
2.7.1 Sample Holdersp. 41
2.7.2 Standard Samplesp. 43
2.7.3 Data Acquisitionp. 44
2.8 Energy Dispersive Powder X-ray Diffractionp. 45
2.9 Powder Neutron Diffractionp. 46
2.9.1 Properties of the Neutronp. 46
2.9.2 Sources of Neutronsp. 48
2.9.3 Detection of Neutronsp. 49
2.9.4 Monochromatic Techniquesp. 50
2.9.5 Time-of-Flight Techniquesp. 53
Referencesp. 56
Chapter 3 The Intensity of a Bragg ReflectionR. B. Von Dreele and J. Rodriguez-Carvajal
3.1 Introductionp. 58
3.2 Single Atom Scattering Theoryp. 58
3.2.1 X-ray Scatteringp. 58
3.2.2 Neutron Scatteringp. 62
3.3 Scattering from a Crystal Latticep. 63
3.3.1 Thermal Motion Effectsp. 65
3.3.2 The Lorentz Factorp. 66
3.3.3 Scattering from a Modulated Crystal Latticep. 67
3.3.4 Neutron Magnetic Moment Scatteringp. 71
3.4 Scattering from a Polycrystalline Powderp. 83
3.4.1 Friedel Pair Overlapp. 84
3.4.2 Reflection Multiplicityp. 84
3.4.3 Texture Effectsp. 84
3.4.4 Absorption Effectsp. 86
Acknowledgementsp. 87
Referencesp. 87
Chapter 4 General Data ReductionRudolf Allmann
4.1 Introductionp. 89
4.2 Elimination of Fake Reflections (Outliers)p. 90
4.3 Fitting and Subtraction of Backgroundp. 91
4.4 Data Smoothingp. 93
4.4.1 Smoothing by Sliding Polynomials (Savitzky-Golay Method)p. 93
4.4.2 Digital Low Pass Filtersp. 96
4.5 K[alpha subscript 2]-Strippingp. 100
4.6 Peak Search Algorithmsp. 105
4.6.1 Trend-oriented Peak Searchp. 105
4.6.2 Peak Search by Second Derivativesp. 107
4.6.3 Peak Search with a Predefined Peak Shapep. 110
4.7 Profile Fitting and Profile Shape Functionsp. 111
4.8 Detection and Correction of Systematic Errorsp. 119
4.8.1 External Standardsp. 126
4.8.2 Internal Standardsp. 127
4.8.3 Correction Together with the Refinement of Lattice Constantsp. 130
Referencesp. 131
Chapter 5 The Profile of a Bragg Reflection for Extracting IntensitiesArmel Le Bail
5.1 Introductionp. 134
5.2 Overview of Contributions to the Peak Profile Functionp. 135
5.3 Instrumental Aberrationsp. 136
5.3.1 Largest Size Effect Ever Detectedp. 137
5.3.2 Monte Carlo Ray-tracingp. 138
5.4 Sample Broadeningp. 141
5.4.1 Crystallite Sizep. 142
5.4.2 Lattice Strainp. 146
5.4.3 Anisotropic Sample Broadening: Faultingp. 148
5.5 Individual Peak Fitting and Line Profile Analysisp. 151
5.5.1 Peak Fitting for Intensity/Position Extraction - With or without Cell Knowledgep. 152
5.5.2 Using Individual Peaks for Size/Distortion Extractionp. 152
5.5.3 Further Approximationsp. 152
5.6 Whole Powder Pattern Decomposition (WPPD) - No Structurep. 153
5.6.1 No Cell Restraintp. 153
5.6.2 Cell-restrained Whole Powder Pattern Decompositionp. 153
5.6.3 Main Applications of WPPDp. 156
5.7 Conclusionsp. 158
Referencesp. 159
Chapter 6 Instrumental Contributions to the Line Profile in X-Ray Powder Diffraction. Example of the Diffractometer with Bragg-Brentano GeometryAlexander Zuev
6.1 Introductionp. 166
6.2 Contributions to the Observed Profilep. 169
6.3 General Description of the Methodp. 171
6.4 Basic Equationsp. 173
6.4.1 Vector Equation of a Conep. 173
6.4.2 Equation of a Conicp. 173
6.5 Diffractometer with Bragg-Brentano Geometryp. 175
6.5.1 Coordinate Systems for Bragg-Brentano Geometryp. 175
6.5.2 Equation of a Conic in the Receiving Slit Plane (Coordinate System CS)p. 176
6.5.3 Equation of a Conic in the Sample Surface Plane (Coordinate System CS)p. 177
6.5.4 Case of the Degenerated Cone (2[theta] = 90[degree])p. 177
6.5.5 Intersections of the Conic and Receiving Slit Boundaryp. 178
6.5.6 Angle Between Two Planesp. 178
6.6 Application of the Methodp. 179
6.6.1 Some Illustrative Examples of the Conic in the Receiving Slit Planep. 179
6.6.2 Specific Instrumental Functionp. 182
6.6.3 Total Instrumental Profilep. 192
6.7 About Misalignment, Soller Slits, Monochromatorp. 194
6.7.1 Misalignmentp. 194
6.7.2 Soller Slitsp. 194
6.7.3 Monochromatorp. 196
6.8 Plane Crystal Monochromator in the Diffracted Beamp. 197
6.8.1 Setting of the Monochromatorp. 197
6.8.2 Reflection Conesp. 198
6.8.3 Intersection of the Diffraction and Reflection Conics in the Receiving Slit Planep. 199
6.9 Effect of the Plane Monochromator on Instrumental Functionp. 200
6.9.1 Equatorial Aberration in the Presence of the Monochromatorp. 200
6.9.2 Axial Aberration in the Presence of the Monochromatorp. 201
6.9.3 Total Instrumental Function in the Presence of the Monochromatorp. 201
6.10 Conclusionsp. 201
Acknowledgementsp. 203
Referencesp. 203
Chapter 7 Indexing and Space Group DeterminationAngela Altomare and Carmelo Giacovazzo and Anna Moliterni
7.1 The Crystalline Lattice in Powder Diffractionp. 206
7.2 Indexing of a Powder Patternp. 211
7.2.1 Introductionp. 211
7.2.2 Figures of Meritp. 213
7.2.3 Geometrical Ambiguitiesp. 214
7.2.4 Historical Indexing Programsp. 214
7.2.5 Evolved Indexing Programsp. 217
7.3 Space Group Determinationp. 220
7.3.1 Introductionp. 220
7.3.2 The DASH Procedurep. 221
7.3.3 The EXPO2004 Procedurep. 222
Referencesp. 225
Chapter 8 Crystal Structure DeterminationRocco Caliandro and Carmelo Giacovazzo and Rosanna Rizzi
8.1 Introductionp. 227
8.2 The Patterson Functionp. 228
8.3 Direct Methodsp. 230
8.3.1 Scaling of the Observed Intensities and Normalization of the Structure Factorsp. 232
8.3.2 Estimate of Structure Invariantsp. 233
8.3.3 Tangent Formulap. 238
8.3.4 A Typical Direct Methods Procedurep. 239
8.3.5 Figure of Meritp. 239
8.3.6 Completion of the Crystal Structure and Preliminary Refinementp. 240
8.3.7 Solving Crystal Structures from Powder Neutron Datap. 242
8.4 Direct-space Techniquesp. 243
8.4.1 Grid Search Methodsp. 245
8.4.2 Monte Carlo Methodsp. 245
8.4.3 Simulated Annealing Techniquesp. 249
8.4.4 Genetic Algorithm Techniquesp. 252
8.4.5 Hybrid Approachesp. 254
8.4.6 Application to Real Structuresp. 257
8.4.7 Crystal Structure Predictionp. 258
8.5 Conclusions and Outlookp. 260
Symbols and Notationp. 261
Referencesp. 261
Chapter 9 Rietveld RefinementR. B. Von Dreele
9.1 Introductionp. 266
9.2 Rietveld Theoryp. 268
9.2.1 Least Squaresp. 268
9.3 Constraints and Restraintsp. 271
9.3.1 Introductionp. 271
9.3.2 Rigid Body Refinementp. 271
9.3.3 Rigid Body Refinement of Fe[OP(C subscript 6 H subscript 5) subscript 3 subscript 4]Cl[subscript 2]FeCl[subscript 4]p. 274
9.3.4 Stereochemical Restraint Refinementp. 277
9.3.5 Protein Powder Refinementsp. 279
Acknowledgementp. 280
Referencesp. 280
Chapter 10 The Derivative Difference Minimization MethodLeonid A. Solovyov
10.1 Introductionp. 282
10.2 Derivative Difference Minimization Principlep. 283
10.3 DDM Decomposition Procedurep. 285
10.4 Results and Discussionp. 288
10.4.1 Tests on Simulated and Real Datap. 288
10.4.2 Applications of DDMp. 291
10.5 Conclusionsp. 295
Referencesp. 295
Chapter 11 Quantitative Phase AnalysisIan C. Madsen and Nicola V. Y. Scarlett
11.1 Introductionp. 298
11.2 Phase Analysisp. 299
11.3 Mathematical Basisp. 300
11.3.1 Reference Intensity Ratio (RIR) Methodsp. 303
11.3.2 Rietveld-based Methodsp. 304
11.4 Factors Limiting Accuracyp. 308
11.4.1 Particle Statisticsp. 308
11.4.2 Preferred Orientationp. 310
11.4.3 Microabsorptionp. 312
11.4.4 Precision, Accuracy and the Calculation of Errorp. 314
11.5 Examples of QPA via Powder Diffractionp. 315
11.5.1 Application in Mineralogical Systemsp. 315
11.5.2 Applications in Industrial Systemsp. 322
11.6 Summaryp. 326
Acknowledgementsp. 326
Appendix A Derivation of Errors in Rietveld-based Quantitative Phase Analysisp. 327
Relative Phase Abundancesp. 327
Absolute Phase Abundancesp. 327
Amorphous Contentp. 328
Referencesp. 329
Chapter 12 Microstructural Properties: Texture and Macrostress EffectsNicolae C. Popa
12.1 Texturep. 332
12.1.1 The Orientation Distribution Function and the Pole Distributionsp. 332
12.1.2 Two Goals in Texture Analysisp. 335
12.1.3 Dollase-March Modelp. 337
12.1.4 The Spherical Harmonics Approachp. 339
12.2 Macroscopic Strain and Stressp. 348
12.2.1 Elastic Strain and Stress in a Crystallite - Mathematical Backgroundp. 349
12.2.2 Strain and Stress in Polycrystalline Samplesp. 352
12.2.3 Status of the Strain/Stress Analysis by Diffractionp. 355
12.2.4 Strain/Stress in Isotropic Samples - Classical Approximationsp. 357
12.2.5 Hydrostatic Pressure in Isotropic Polycrystalsp. 363
12.2.6 The Macroscopic Strain/Stress by Spherical Harmonicsp. 365
Referencesp. 373
Chapter 13 Microstructural Properties: Lattice Defects and Domain Size EffectsPaolo Scardi
13.1 Introductionp. 376
13.2 Origin of Line Broadeningp. 377
13.2.1 Size Broadeningp. 377
13.2.2 Strain Broadeningp. 381
13.2.3 Other Sources of Line Broadeningp. 384
13.3 Traditional versus Innovative Methodsp. 387
13.3.1 Integral Breadth Methodsp. 387
13.3.2 Fourier Methodsp. 389
13.3.3 Profile Fitting and Traditional LPA Methodsp. 394
13.3.4 Whole Powder Pattern Modellingp. 395
13.4 WPPM: Examples of Applicationp. 396
13.4.1 Heavily Deformed Metal Powdersp. 396
13.4.2 Nanocrystalline Cerium Oxide Powderp. 402
Acknowledgementsp. 405
List of Principal Symbolsp. 405
Appendix Fourier Transforms of Profile Componentsp. 407
Instrumental Profile (IP)p. 407
Domain Size (S)p. 407
Faulting (F)p. 408
Dislocations (D)p. 408
Anti-phase Domain Boundaries (APB)p. 410
Stoichiometry Fluctuation (C)p. 410
Referencesp. 411
Chapter 14 Two-dimensional Diffraction Using Area DetectorsBernd Hinrichsen and Robert E. Dinnebier and Martin Jansen
14.1 Two-dimensional Detectorsp. 414
14.1.1 CCD Detectorsp. 415
14.1.2 Imaging Plate Detectorsp. 416
14.1.3 Flat Panel Detectorsp. 416
14.1.4 Hybrid Pixel Detectorsp. 417
14.2 Diffraction Geometryp. 418
14.2.1 Resolution and FWHM in Two-dimensional Diffractionp. 419
14.2.2 Diffraction Angle Transformationp. 422
14.2.3 Incident Angle and Ray Distance Calculationsp. 426
14.2.4 General Transformationsp. 426
14.3 Intensity Correctionsp. 429
14.3.1 Lorentz Correctionsp. 430
14.3.2 Polarization Correctionp. 434
14.3.3 Incident Angle Correctionp. 435
Referencesp. 437
Chapter 15 Powder Diffraction under Non-ambient ConditionsPoul Norby and Ulrich Schwarz
15.1 Introductionp. 439
15.2 In Situ Powder Diffractionp. 440
15.2.1 Techniques and Instrumentationp. 442
15.3 Powder Diffraction at High Pressurep. 450
15.3.1 Introductionp. 450
15.3.2 The Diamond Anvil Cellp. 451
15.3.3 Pressure Mediap. 453
15.3.4 Diffraction Measurementsp. 454
15.3.5 Pressure Measurementp. 457
15.3.6 Thermodynamic Considerationsp. 459
Selected Reviewsp. 461
In-situ diffractionp. 461
High-pressure Diffractionp. 461
Referencesp. 462
Chapter 16 Local Structure from Total Scattering and Atomic Pair Distribution Function (PDF) AnalysisSimon Billinge
16.1 Introductionp. 464
16.2 Theoryp. 470
16.2.1 Single Component Systemsp. 470
16.2.2 Multicomponent Systemsp. 473
16.3 Experimental Methodsp. 479
16.4 Structural Modelingp. 481
16.4.1 Model Independent Structural Information from the PDFp. 481
16.4.2 Modeling the PDFp. 482
16.4.3 Modeling Total Scattering in Reciprocal Spacep. 485
16.4.4 Emerging Modeling Approachesp. 486
Referencesp. 491
Chapter 17 Computer Software for Powder DiffractionLachlan M. D. Cranswick
17.1 Introductionp. 494
17.2 Finding and Testing Softwarep. 494
17.2.1 Locating New Softwarep. 494
17.2.2 Selecting Softwarep. 495
17.2.3 Re-locating Software on the Internetp. 495
17.3 Available Softwarep. 495
17.3.1 Third-party Diffractometer Control Softwarep. 495
17.3.2 Phase Identification and Search-match Softwarep. 496
17.3.3 Crystal Structure Databasesp. 498
17.3.4 Powder Data Conversionp. 500
17.3.5 Structure Data Conversion and Transformationp. 503
17.3.6 Powder Diffraction Pattern Viewing and Processingp. 504
17.3.7 Peak Finding and Peak Profilingp. 510
17.3.8 Powder Indexingp. 510
17.3.9 Space Group Assignmentp. 521
17.3.10 Space Group Information Software and Databasesp. 521
17.3.11 Unit Cell Refinementp. 522
17.3.12 Full Profile Fitting (Pawley, Le Bail)p. 523
17.3.13 Texture Analysis Softwarep. 528
17.3.14 Size Strain Analysisp. 528
17.3.15 Single Crystal Suites useful to Powder Diffractionp. 530
17.3.16 Powder Diffraction Suitesp. 531
17.3.17 Structure Solution Software Specifically for Powder Diffractionp. 531
17.3.18 Structure Solution Using Single Crystal Softwarep. 534
17.3.19 2D to 3D Molecular Model Generationp. 534
17.3.20 Single Crystal Refinement Programs and Helper Programs to Assist in Building up the Structurep. 538
17.3.21 Rietveld Structure Refinementp. 541
17.3.22 Pair Distribution Function Softwarep. 541
17.3.23 Hydrogen Placement Using Single Crystal and Ancillary Softwarep. 541
17.3.24 Free Standing Powder and Single Crystal Fourier Map Generation and Display Softwarep. 541
17.3.25 Quantitative Phase Analysisp. 548
17.3.26 Powder Pattern Calculationp. 548
17.3.27 Structure Validationp. 548
17.3.28 Crystallographic Structure Visualization: During Structure Solution and Refinementp. 554
17.3.29 Visualization and Photo Realistic Rendering of Crystal Structuresp. 555
17.3.30 Miscellaneous Resourcesp. 562
Appendix 1 Internet links for Cited Software and Resourcesp. 562
Subject Indexp. 571