Cover image for Mechanical behaviour of engineering materials : metals, ceramics, polymers, and composites
Title:
Mechanical behaviour of engineering materials : metals, ceramics, polymers, and composites
Personal Author:
Publication Information:
Berlin : Springer, 2007
Physical Description:
xv, 534 p. : ill. ; 24 cm.
ISBN:
9783540734468

9783540734482
General Note:
Also available in online version
Electronic Access:
Fulltext
DSP_RESTRICTION_NOTE:
Remote access restricted to users with a valid UTM ID via VPN

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010179766 TA404.8 R63 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation (elasticity, plasticity, fracture, creep, fatigue) are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials (metals, ceramics, polymers, and composites) and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem. The reader will thus learn how to critically employ design rules and thus to avoid failure of mechanical components.

'Mechanical Behaviour of Engineering Materials' is both a valuable textbook and a useful reference for graduate students and practising engineers.


Table of Contents

1 The structure of materialsp. 1
1.1 Atomic structure and the chemical bondp. 1
1.2 Metalsp. 5
1.2.1 Metallic bondp. 5
1.2.2 Crystal structuresp. 7
1.2.3 Polycrystalline metalsp. 14
1.3 Ceramicsp. 15
1.3.1 Covalents bondp. 16
1.3.2 Ionic bondp. 18
1.3.3 Dipole bondp. 19
1.3.4 Van der Waals bondp. 19
1.3.5 Hydrogen bondp. 20
1.3.6 The crystal structure of ceramicsp. 21
1.3.7 Amorphous ceramicsp. 22
1.4 Polymersp. 23
1.4.1 The chemical structure of polymersp. 24
1.4.2 The structure of polymersp. 25
2 Elasticityp. 31
2.1 Deformation modesp. 31
2.2 Stress and strainp. 32
2.2.1 Stressp. 32
2.2.2 Strainp. 34
2.3 Atomic interactionsp. 37
2.4 Hooke's lawp. 39
2.4.1 Elastic strain energyp. 42
2.4.2 Elastic deformation under multiaxial loadsp. 43
2.4.3 Isotropic materialp. 46
2.4.4 Cubic latticep. 50
2.4.5 Orthorhombic crystals and orthotropic elasticityp. 53
2.4.6 Transversally isotropic elasticityp. 54
2.4.7 Other crystal latticesp. 55
2.4.8 Examplesp. 55
2.5 Isotropy and anisotropy of macroscopic componentsp. 57
2.6 Temperature dependence of Young's modulusp. 60
3 Plasticity and failurep. 63
3.1 Nominal and true strainp. 64
3.2 Stress-strain diagramsp. 68
3.2.1 Types of stress-strain diagramsp. 68
3.2.2 Analysis of a stress-strain diagramp. 73
3.2.3 Approximation of the stress-strain curvep. 81
3.3 Plasticity theoryp. 83
3.3.1 Yield criteriap. 84
3.3.2 Yield criteria of metalsp. 86
3.3.3 Yield criteria of polymersp. 92
3.3.4 Flow rulesp. 93
3.3.5 Hardeningp. 97
3.3.6 Application of a yield criterion, flow rule, and hardening rulep. 103
3.4 Hardnessp. 107
3.4.1 Scratch testsp. 108
3.4.2 Indentation testsp. 108
3.4.3 Rebound testsp. 110
3.5 Material failurep. 110
3.5.1 Shear fracturep. 111
3.5.2 Cleavage fracturep. 114
3.5.3 Fracture criteriap. 116
4 Notchesp. 119
4.1 Stress concentration factorp. 119
4.2 Neuber's rulep. 122
4.3 Tensile testing of notched specimensp. 125
5 Fracture mechanicsp. 129
5.1 Introduction to fracture mechanicsp. 129
5.1.1 Definitionsp. 129
5.2 Linear-elastic fracture mechanicsp. 131
5.2.1 The stress field near a crack tipp. 131
5.2.2 The energy balance of crack propagationp. 134
5.2.3 Dimensioning pre-cracked components under static loadsp. 142
5.2.4 Fracture parameters of different materialsp. 144
5.2.5 Material behaviour during crack propagationp. 146
5.2.6 Subcritical crack propagationp. 150
5.2.7 Measuring fracture parametersp. 152
5.3 Elastic-plastic fracture mechanicsp. 158
5.3.1 Crack tip opening displacement (CTOD)p. 158
5.3.2 J integralp. 159
5.3.3 Material behaviour during crack propagationp. 161
5.3.4 Measuring elastic-plastic fracture mechanics parametersp. 163
6 Mechanical behaviour of metalsp. 165
6.1 Theoretical strengthp. 165
6.2 Dislocationsp. 166
6.2.1 Types of dislocationsp. 166
6.2.2 The stress field of a dislocationp. 168
6.2.3 Dislocation movementp. 170
6.2.4 Slip systemsp. 173
6.2.5 The critical resolved shear stressp. 178
6.2.6 Taylor factorp. 182
6.2.7 Dislocation interactionp. 184
6.2.8 Generation, multiplication and annihilation of dislocationsp. 185
6.2.9 Forces acting on dislocationsp. 187
6.3 Overcoming obstaclesp. 189
6.3.1 Athermal processesp. 190
6.3.2 Thermally activated processesp. 193
6.3.3 Ductile-brittle transitionp. 196
6.3.4 Climbp. 196
6.3.5 Intersection of dislocationsp. 197
6.4 Strengthening mechanismsp. 198
6.4.1 Work hardeningp. 198
6.4.2 Grain boundary strengtheningp. 200
6.4.3 Solid solution hardeningp. 203
6.4.4 Particle strengtheningp. 209
6.4.5 Hardening of steelsp. 218
6.5 Mechanical twinningp. 223
7 Mechanical behaviour of ceramicsp. 227
7.1 Manufacturing ceramicsp. 228
7.2 Mechanisms of crack propagationp. 229
7.2.1 Crack deflectionp. 230
7.2.2 Crack bridgingp. 230
7.2.3 Microcrack formation and crack branchingp. 231
7.2.4 Stress-induced phase transformationsp. 232
7.2.5 Stable crack growthp. 234
7.2.6 Subcritical crack growth in ceramicsp. 234
7.3 Statistical fracture mechanicsp. 236
7.3.1 Weibull statisticsp. 236
7.3.2 Weibull statistics for subcritical crack growthp. 242
7.3.3 Measuring the parameters [sigma subscript 0] and mp. 243
7.4 Proof testp. 246
7.5 Strengthening ceramicsp. 248
7.5.1 Reducing defect sizep. 249
7.5.2 Crack deflectionp. 249
7.5.3 Microcracksp. 251
7.5.4 Transformation tougheningp. 252
7.5.5 Adding ductile particlesp. 255
8 Mechanical behaviour of polymersp. 257
8.1 Physical properties of polymersp. 257
8.1.1 Relaxation processesp. 257
8.1.2 Glass transition temperaturep. 260
8.1.3 Melting temperaturep. 261
8.2 Time-dependent deformation of polymersp. 263
8.2.1 Phenomenological description of time-dependencep. 263
8.2.2 Time-dependence and thermal activationp. 266
8.3 Elastic properties of polymersp. 269
8.3.1 Elastic properties of thermoplasticsp. 269
8.3.2 Elastic properties of elastomers and duromersp. 273
8.4 Plastic behaviourp. 274
8.4.1 Amorphous thermoplasticsp. 275
8.4.2 Semi-crystalline thermoplasticsp. 281
8.5 Increasing the thermal stabilityp. 284
8.5.1 Increasing the glass and the melting temperaturep. 284
8.5.2 Increasing the crystallinityp. 287
8.6 Increasing strength and stiffnessp. 289
8.7 Increasing the ductilityp. 290
8.8 Environmental effectsp. 292
9 Mechanical behaviour of fibre reinforced compositesp. 295
9.1 Strengthening methodsp. 296
9.1.1 Classifying by particle geometryp. 296
9.1.2 Classifying by matrix systemsp. 299
9.2 Elasticity of fibre compositesp. 300
9.2.1 Loading in parallel to the fibresp. 301
9.2.2 Loading perpendicular to the fibresp. 301
9.2.3 The anisotropy in generalp. 302
9.3 Plasticity and fracture of compositesp. 303
9.3.1 Tensile loading with continuous fibresp. 303
9.3.2 Load transfer between matrix and fibrep. 305
9.3.3 Crack propagation in fibre compositesp. 308
9.3.4 Statistics of composite failurep. 312
9.3.5 Failure under compressive loadsp. 313
9.3.6 Matrix-dominated failure and arbitrary loadsp. 315
9.4 Examples of compositesp. 315
9.4.1 Polymer matrix compositesp. 315
9.4.2 Metal matrix compositesp. 321
9.4.3 Ceramic matrix compositesp. 323
9.4.4 Biological compositesp. 325
10 Fatiguep. 333
10.1 Types of loadsp. 333
10.2 Fatigue failure of metalsp. 337
10.2.1 Crack initiationp. 338
10.2.2 Crack propagation (stage II)p. 342
10.2.3 Final fracturep. 344
10.3 Fatigue of ceramicsp. 345
10.4 Fatigue of polymersp. 346
10.4.1 Thermal fatiguep. 346
10.4.2 Mechanical fatiguep. 347
10.5 Fatigue of fibre compositesp. 347
10.6 Phenomenological description of the fatigue strengthp. 349
10.6.1 Fatigue crack growthp. 349
10.6.2 Stress-cycle diagrams (S-N diagrams)p. 357
10.6.3 The role of mean stressp. 366
10.6.4 Fatigue assessment with variable amplitude loadingp. 368
10.6.5 Cyclic stress-strain behaviourp. 369
10.6.6 Kitagawa diagramp. 373
10.7 Fatigue of notched specimensp. 375
11 Creepp. 383
11.1 Phenomenology of creepp. 383
11.2 Creep mechanismsp. 388
11.2.1 Stages of creepp. 388
11.2.2 Dislocation creepp. 389
11.2.3 Diffusion creepp. 393
11.2.4 Grain boundary slidingp. 396
11.2.5 Deformation mechanism mapsp. 396
11.3 Creep fracturep. 400
11.4 Increasing the creep resistancep. 401
12 Exercisesp. 407
1 Packing density of crystalsp. 407
2 Macromoleculesp. 407
3 Interaction between two atomsp. 407
4 Bulk modulusp. 408
5 Relation between the elastic constantsp. 408
6 Candy catapultp. 409
7 True strainp. 410
8 Interest calculationp. 410
9 Large deformationsp. 410
10 Yield criteriap. 410
11 Yield criteria of polymersp. 411
12 Design of a notched shaftp. 411
13 Estimating the fracture toughness K[subscript Ic]p. 412
14 Determination of the fracture toughness K[subscript Ic]p. 412
15 Static design of a tubep. 413
16 Theoretical strengthp. 414
17 Estimating the dislocation densityp. 414
18 Thermally activated dislocation generationp. 414
19 Work hardeningp. 415
20 Grain boundary strengtheningp. 415
21 Precipitation hardeningp. 415
22 Weibull statisticsp. 415
23 Design of a fluid tankp. 416
24 Subcritical crack growth of a ceramic componentp. 417
25 Mechanical models of viscoelastic polymersp. 417
26 Elastic dampingp. 418
27 Eyring plotp. 418
28 Elasticity of fibre compositesp. 419
29 Properties of a polymer matrix compositep. 419
30 Estimating the number of cycles to failurep. 419
31 Miner's rulep. 420
32 Larson-Miller parameterp. 421
33 Creep deformationp. 421
34 Relaxation of thermal stresses by creepp. 421
13 Solutionp. 423
A Using tensorsp. 451
A.1 Introductionp. 451
A.2 The order of a tensorp. 451
A.3 Tensor notationsp. 452
A.4 Tensor operations and Einstein summation conventionp. 453
A.5 Coordinate transformationsp. 456
A.6 Important constants and tensor operationsp. 457
A.7 Invariantsp. 458
A.8 Derivations of tensor fieldsp. 459
B Miller and Miller-Bravais indicesp. 461
B.1 Miller indicesp. 461
B.2 Miller-Bravais indicesp. 462
C A crash course in thermodynamicsp. 465
C.1 Thermal activationp. 465
C.2 Free energy and free enthalpyp. 466
C.3 Phase transformations and phase diagramsp. 468
D The J integralp. 473
D.1 Discontinuities, singularities, and Gauss' theoremp. 473
D.2 Energy-momentum tensorp. 475
D.3 J integralp. 476
D.4 J integral at a crack tipp. 479
D.5 Plasticity at the crack tipp. 481
D.6 Energy interpretation of the J integralp. 482
Referencesp. 485
List of symbolsp. 493
Indexp. 499