Cover image for Advances in nanoscale magnetism : proceedings of the International Conference on Nanoscale  ICNM-2007, June 25 -29, Istanbul, Turkey Magnetism ICNM-2007, June 25-29, Istanbul, Turkey
Title:
Advances in nanoscale magnetism : proceedings of the International Conference on Nanoscale ICNM-2007, June 25 -29, Istanbul, Turkey Magnetism ICNM-2007, June 25-29, Istanbul, Turkey
Series:
Springer proceedings in physics ; 122
Publication Information:
Berlin : Springer, 2009
Physical Description:
xiv, 328 p. : ill. ; 24 cm.
ISBN:
9783540698814

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010194228 QC753.2 I57 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Intensive investigations on nanoscale magnetism have promoted remarkable progressintechnologicalapplicationsofmagnetisminvariousareas.Thete- nical progress of recent years in the preparations of multilayer thin ?lms and nanowires led to the discovery of Giant Magnetoresistance (GMR), imp- ing an extraordinary change in the resistivity of the material by varying the applied external magnetic ?eld. The Nobel Prize for Physics in 2007 was awardedtoAlbertFertandPeterGrun ] bergfortheirdiscoveryofGMR.App- cations of this phenomenon have revolutionizedtechniques for retrieving data fromharddisks.Thediscoveryalsoplaysamajorroleinvariousmagnetics- sors as well as the development of a new generation of electronics. The use of GMRcanberegardedasoneofthe'rstmajorapplicationsofnanotechnology. The GMR materials have already found applications as sensors of low magnetic ?eld, a key component of computer hard disk heads, magnetores- tive RAM chips etc. The "read" heads for magnetic hard disk drives have allowed us to increase the storage density on a disk drive from 1 to 20 Gbit per square inch, merely by the incorporation of the new GMR materials. On the other hand, recently discovered giant magneto-impedance (GMI) mate- als look very promising in the development of a new generation of microwave band electronic devices (such as switches, attenuators, and antennas) which could be managed electrically.


Table of Contents

I. Galanakis and K. Ozdogan and E. SasiogluN. Lakshmi and V. Sebastian and K. VenugopalanR. Yilgin and B. AktasN. Bulut and Y. Tomoda and K. Tanikawa and S. Takahashi and S. MaekawaL.I. Koroleva and D.M. ZashchirinskiiY. Ozturk and I. Avgin and M. Erol and E. CelikG.H. Aydogdu and Y. Kuru and H.-U. HabermeierV.A. Ageev and V.I. Kirischuk and Yu.V. Koblyanskiy and G.A. Melkov and L.V. Sadovnikov and A.N. Slavin and N.V. Strilchuk and V.I. Vasyuchka and V.A. ZheltonozhskyB.A. Gurovich and K.E. Prikhodko and E.A. Kuleshova and A.G. Domantovsky and K.I. Maslakov and E.Z. MeilikhovT. Koutzarova and S. Kolev and C. Ghelev and K. Grigorov and I. NedkovA. Chizhik and A. Zhukov and V. Zhukova and C. Garcia and J.M. Blanco and J.J. del Val and L. Fernandez and N. Iturriza and J. GonzalezR. Brzozowski and M. Wasiak and P. Sovak and M. MonetaJ.A. FedotovaE. Meilikhov and R. FarzetdinovaD.S. Schmool and M. Schmalzl
1 Role of Defects and Disorder in the Half-Metallic Full-Heusler Compoundsp. 1
1.1 Introductionp. 1
1.2 Defects in Full-Heuslers Containing Co and Mnp. 3
1.3 Defects Driven Half-Metallic Ferrimagnetismp. 7
1.4 A Possible Route to Half-Metallic Antiferromagnetismp. 11
1.5 Vacanciesp. 13
1.6 Summary and Outlookp. 14
Referencesp. 16
2 Clustering in Heusler Alloysp. 21
2.1 Introductionp. 21
2.2 Experimental Methodsp. 24
2.3 Results and Discussionp. 24
2.3.1 X-Ray Diffraction Studiesp. 24
2.3.2 Mossbauer Studiesp. 28
2.3.3 DC Magnetization Studiesp. 31
Referencesp. 34
3 Anisotropy of Ferromagnetic Heusler Alloys Thin Filmsp. 37
3.1 Introductionp. 37
3.1.1 TMR and GMR Effectsp. 38
3.1.2 Critical Currentp. 39
3.1.3 Theoretical Backgroundp. 41
3.2 The Theory of Ferromagnetic Resonancep. 42
3.2.1 Dynamics of Magnetizationp. 42
3.2.2 Resonance Field for Polycrystalline Filmp. 44
3.2.3 Ferromagnetic Resonance in Single Crystalline Filmp. 45
3.2.4 Line-Width of Resonance Absorptionp. 47
3.3 Introductionp. 50
3.3.1 Sample Preparationp. 50
3.3.2 Magnetic Characterizationsp. 53
3.3.3 FMR Resultsp. 55
3.4 Conclusionsp. 62
Referencesp. 64
4 Quantum Monte Carlo Study of Anderson Magnetic Impurities in Semiconductorsp. 67
4.1 Introductionp. 67
4.2 Modelp. 69
4.3 Two-Dimensional Casep. 71
4.3.1 Magnetic Correlations Between the Impuritiesp. 71
4.3.2 Impurity-Host Correlationsp. 76
4.4 Three-Dimensional Casep. 79
4.5 Tight-Binding Model for a Mn d Orbital in GaAsp. 82
4.6 Discussion and Summaryp. 84
Referencesp. 86
5 New Type of Nanomaterials: Doped Magnetic Semiconductors Contained Ferrons, Antiferrons, and Afmonsp. 89
5.1 Introductionp. 89
5.2 Ferronsp. 90
5.2.1 Giant Red Shift of Fundamental Absorption Edge Connected with Ferromagnetic Orderingp. 90
5.2.2 Notion of Ferronsp. 92
5.2.3 Electrical Resistivity and Magnetoresistance of Nondegenerate Ferromagnetic Semiconducrors with n-Type of Electrical Conductivityp. 94
5.2.4 Magnetic Two-Phase Ferromagnetic-Antiferromagnetic State in Manganitesp. 99
5.2.5 Antiferronsp. 103
5.2.6 Afmonsp. 108
Referencesp. 110
6 Cerium-Doped Yttrium Iron Garnet Thin Films Prepared by Sol-Gel Process: Synthesis, Characterization, and Magnetic Propertiesp. 113
6.1 Introductionp. 114
6.2 Experimental Detailsp. 117
6.3 Results and Discussionp. 126
6.4 Summary and Conclusionsp. 127
Referencesp. 128
7 Tuning the Magnetic and Electronic Properties of Manganite Thin Films by Epitaxial Strainp. 131
7.1 Introductionp. 131
7.2 Preparation and Analysis of Filmsp. 135
7.2.1 Deposition Technique and Film Growthp. 135
7.2.2 Analysis of Filmsp. 137
7.3 Structural Characterization, Electrical and Magnetic Properties of Manganites Filmp. 138
7.3.1 Structural Characterizationp. 138
7.3.2 Magnetic Propertiesp. 139
7.3.3 Electrical Propertiesp. 142
7.4 General Discussionp. 144
7.5 Conclusionsp. 146
Referencesp. 146
8 Radiation Nanostructuring of Magnetic Crystalsp. 149
8.1 Introductionp. 149
8.2 The Influence of Inhomogeneities upon the Properties of Ferrites and Ferrite Devicesp. 150
8.3 Wave-Front Reversal in a Medium with Inhomogeneitiesp. 151
8.4 Experimental Resultsp. 153
8.5 Discussionsp. 159
8.6 Conclusionsp. 164
Referencesp. 165
9 Electromagnetic Radiation of Micro and Nanomagnetic Structures with Magnetic Reversalp. 167
9.1 Introductionp. 167
9.2 Experimentalp. 168
9.3 Results and Discussionp. 170
9.3.1 Coercivity Static Measurements of Magnetic Patterned Mediap. 170
9.3.2 The Dependence of the Amplitude and Duration of Emitted Signal on the External Magnetic Field Amplitudep. 173
9.3.3 Experimental Determination of Dynamic Emitted Parameters of Magnetic Patterned Mediap. 174
9.3.4 Dependence of Dynamical Coercivity of Bit Arrays with Underlayer on the Bits Structural Geometryp. 176
9.3.5 Peculiarities of the Magnetic Structure of Cobalt Bits with and without a Soft Magnetic Underlayerp. 177
9.4 Conclusionsp. 180
Referencesp. 181
10 Structural and Magnetic Properties and Preparation Techniques of Nanosized M-type Hexaferrite Powdersp. 183
10.1 Introductionp. 183
10.2 Crystalline Structurep. 184
10.3 Magnetic Propertiesp. 186
10.4 Methods for Preparationp. 192
10.5 Microemulsion Techniquep. 196
Referencesp. 199
11 Nanocrystallization and Surface Magnetic Structure of Ferromagnetic Ribbons and Microwiresp. 205
11.1 Introductionp. 205
11.2 Co-Rich Ribbonsp. 206
11.2.1 Experimental Detailsp. 206
11.2.2 Results and Discussionp. 207
11.3 Ni-Rich Ribbonsp. 210
11.3.1 XRD and AFM Structural Resultsp. 210
11.3.2 Magnetic Resultsp. 210
11.4 Microwires with Novel Composition Cu[subscript 70](Co[subscript 70]Fe[subscript 5]Si[subscript 10]B[subscript 15])[subscript 30]p. 212
11.4.1 Experimental Detailsp. 213
11.4.2 Results and Discussionp. 213
Referencesp. 217
12 On Structural and Magnetic Properties of Fe[subscript 73.5-x]Si[subscript 13.5]B[subscript 9]Cu[subscript 1]Nb[subscript 3]Mn[subscript x] Metal Alloysp. 219
12.1 Introductionp. 219
12.2 Experimentp. 220
12.3 Results and Discussionp. 220
12.3.1 As-Quenched Fe[subscript 73.5-x]Si[subscript 13.5]B[subscript 9]Cu[subscript 1]Nb[subscript 3]Mn[subscript x]p. 220
12.3.2 Annealed Fe[subscript 73.5-x]Si[subscript 13.5]B[subscript 9]Cu[subscript 1]Nb[subscript 3]Mn[subscript x]p. 224
12.4 Conclusionsp. 229
Referencesp. 230
13 FeCoZr-Al[subscript 2]O[subscript 3] Granular Nanocomposite Films with Tailored Structural, Electric, Magnetotransport and Magnetic Propertiesp. 231
13.1 Introductionp. 231
13.1.1 Granular Nanocomposites for Electronics: Reasons of Interestp. 232
13.1.2 Preparation and Structure of Granular MMCsp. 233
13.1.3 Percolation in Granular Nanocompositesp. 235
13.1.4 Carrier Transport in Granular MMCs around Metal-Insulator Transitionp. 237
13.1.5 Magnetic Properties of Granular Nanocompositesp. 242
13.2 Properties of FeCoZr-Al[subscript 2]O[subscript 3] Nanocomposite Films: Synthesis in Pure Ar and Mixed Ar + O Ambientp. 243
13.2.1 Synthesis and Samples Preparationp. 243
13.2.2 Mossbauer Spectroscopyp. 244
13.2.3 Alternation Grads- and SQUID-Magnetometryp. 246
13.2.4 Atomic Force-Magnetic Force Microscopyp. 249
13.2.5 Electric and Magnetotransport Propertiesp. 253
13.3 Concluding Remarksp. 261
Referencesp. 263
14 Ferromagnetism of Nanostructures Consisting of Ferromagnetic Granules with Dipolar Magnetic Interactionp. 269
14.1 Introductionp. 269
14.2 Lattices of Point-like and Rod-like Ferromagnetic Granules with Dipole Interactionp. 273
14.2.1 3D Lattice of Point-Like Granulesp. 275
14.2.2 2D Lattice of Point-Like Granulesp. 277
14.2.3 3D Lattice of Rod-Like Granulesp. 279
14.2.4 2D Lattice of Rod-Like Granulesp. 279
14.3 Lattices of Ellipsoidal Granules with Dipole Interactionp. 280
14.3.1 Magnetic Field of the Ellipsoidal Granulep. 280
14.3.2 3D Lattice of Ellipsoidal Granulesp. 282
14.3.3 2D Lattice of Prolate Ellipsoidal Granulesp. 282
14.3.4 2D Lattice with Oblate Ellipsoidal Granulesp. 284
14.3.5 2D Lattice of Oblate Ellipsoidal Granules in a Magnetic Fieldp. 285
14.4 Partially Populated Lattices of Point-Like Ising Dipolesp. 287
14.4.1 Distribution of Local Magnetic Fieldsp. 288
14.4.2 Magnetic Phase Diagramp. 290
14.5 Random Systems of Point-Like and Rod-Like Ising Dipolesp. 295
14.5.1 Introductionp. 295
14.5.2 Generalized Mean Field Theory for Point (Spherical) Dipolesp. 296
14.5.3 Generalized Mean Field Theory for Rod-Like Dipolesp. 303
14.5.4 Magnetic Properties of a Random System of Rod-Like Dipolesp. 308
14.6 Experimental Examplesp. 311
14.6.1 Magnetism of Ultrathin Filmsp. 311
14.6.2 2D Lattices of Disk-Shaped Granules in a Magnetic Fieldp. 314
14.6.3 Magnetic Recording Densityp. 314
14.6.4 Conclusionsp. 318
Referencesp. 318
15 Magnetic Dipolar Interactions in Nanoparticle Systems: Theory, Simulations and Ferromagnetic Resonancep. 321
15.1 Introductionp. 321
15.2 Theory of Dipole - Dipole Interactions in Magnetic Nanoparticlesp. 322
15.2.1 Dipolar Interactionsp. 322
15.2.2 Simulations for Arrays of Nanoparticlesp. 323
15.3 Ferromagnetic Resonance in Magnetic Nanoparticlesp. 325
15.4 Conclusionsp. 326
Referencesp. 326
Contributorsp. 327