Cover image for Advanced ocean modelling : using open-source software
Title:
Advanced ocean modelling : using open-source software
Personal Author:
Publication Information:
Berlin, GW. ; London : Springer, c2010
Physical Description:
xiii, 181 p. : ill. (some col.) ; 24 cm.
ISBN:
9783642106095

9783642106101

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010278281 GC10.4.M36 K36 2010 Open Access Book Book
Searching...

On Order

Summary

Summary

This book focuses on motions of incompressible ?uids of a freely moving surface being in?uenced by both the Earth's rotation and density strati?cation. In contrast to traditional textbooks in the ?eld of geophysical ?uid dynamics, such as those by by Cushman-Roisin (1994) and Gill (1982), this book uses the method of proce- oriented hydrodynamic modelling to illustrate a rich variety of ?uid phenomena. To this end, the reader can adopt the model codes, found on the Springer server accompanying this book, to reproduce most graphs of this book and, even better, to create animation movies. The reader can also employ the codes as templates for own independent studies. This can be done by a lay person as a hobby activity, undergraduate or postgraduate students as part of their education, or professional scientists as part of research. Exercises of this book are run with open-source software that can be freely downloaded from the Internet. This includes the FORTRAN 95 compiler "G95" used for execution of model simulations, the data visualisation program "SciLab", and "ImageMagick" for the creation of graphs and GIF animations, which can be watched with most Internet browsers.


Author Notes

Jochen Kmpf, a Senior Lecturer in Oceanography at Flinders University, Australia, is known for the discovery of the South Australian Coastal Upwelling System. His research interests cover a broad range of subjects including surface mixed-layer physics, coastal and estuarine circulations, density-driven flows, benthic storms, and more recently dispersal of desalination brine.


Table of Contents

1 Introductionp. 1
1.1 Fundamental Physical Lawsp. 1
1.1.1 Cartesian Coordinatesp. 1
1.1.2 The Navier-Stokes Equationsp. 1
1.1.3 Boundary Fluxesp. 3
1.1.4 The Hydrostatic Approximationp. 3
1.1.5 The Stability Frequencyp. 4
1.2 Numerical Methodsp. 4
1.2.1 Finite Differencesp. 4
1.2.2 Requirements for a Finite-Difference Modelp. 5
1.3 Modelling with Fortran 95p. 5
1.3.1 Writing and Compiling Codesp. 5
1.3.2 Modular Source Codesp. 6
1.4 Visualisation with SciLabp. 6
1.4.1 Writing SciLab Scriptsp. 6
1.4.2 GIF Animationsp. 7
1.5 Organisation of Workp. 8
1.6 Download of Computer Codesp. 8
2 1D Models of Ekman Layersp. 9
2.1 Useful Background Knowledgep. 9
2.1.1 Inertial Oscillationsp. 9
2.1.2 Semi-implicit Treatment of the Coriolis Forcep. 10
2.2 The Surface Ekman Layerp. 11
2.2.1 Boundary-Layer Equationsp. 11
2.2.2 Scaling: The Temporal Rossby Numberp. 11
2.2.3 Scaling: The Ekman Numberp. 12
2.2.4 Solutions of the Boundary-Layer Equationsp. 13
2.2.5 Finite-Difference Equationsp. 13
2.2.6 Formulation of Diffusion Termsp. 14
2.2.7 Stability Criterion for Diffusion Termsp. 14
2.3 Exercise 1: The Surface Ekman Layerp. 15
2.3.1 Task Descriptionp. 15
2.3.2 Resultsp. 16
2.3.3 Explanation of the Ekman-Layer Structurep. 17
2.3.4 Additional Exercises for the Readerp. 17
2.4 The Bottom Ekman Layerp. 18
2.4.1 Boundary-Layer Equationsp. 18
2.5 Exercise 2: The Bottom Ekman Layerp. 18
2.5.1 Task Descriptionp. 18
2.5.2 Resultsp. 18
2.5.3 Additional Exercises for the Readerp. 19
3 Basics of Nonhydrostatic Modellingp. 21
3.1 Level Modelsp. 21
3.2 2D Vertical-Slice Modellingp. 22
3.2.1 Configurationp. 22
3.2.2 The Arakawa C-Gridp. 23
3.3 Surface Gravity Wavesp. 24
3.3.1 The Governing Equationsp. 24
3.3.2 The Dispersion Relationp. 24
3.3.3 Orbital Motions of Water Particles and Wave Pressurep. 26
3.4 Nonhydrostatic Solverp. 26
3.4.1 Splitting Pressure into Partsp. 26
3.4.2 Starting as Simple as Possiblep. 27
3.4.3 Finite-Difference Schemep. 27
3.4.4 The S.O.R. Methodp. 29
3.4.5 Boundary Conditions for Variable Bathymetryp. 31
3.4.6 Stability Criterionp. 31
3.5 Exercise 3: Short Surface Gravity Wavesp. 32
3.5.1 Aimp. 32
3.5.2 Task Descriptionp. 32
3.5.3 Resultsp. 32
3.5.4 Additional Exercise for the Readerp. 33
3.5.5 Implementation of Variable Bottom Topographyp. 34
3.5.6 Resultsp. 35
3.6 Inclusion of Variable Densityp. 35
3.6.1 The Governing Equationsp. 35
3.6.2 Discretisation of the Advection Termsp. 36
3.6.3 Stability Criterion for the Advection Equationp. 38
3.6.4 Implementation of Density Diffusionp. 38
3.6.5 Required Modifications of the Codep. 39
3.7 Exercise 4: Density-Driven Flowsp. 40
3.7.1 Aimp. 40
3.7.2 Task Descriptionp. 40
3.7.3 Theoryp. 41
3.7.4 Resultsp. 41
3.7.5 Can Reduced-Gravity Plumes Jump?p. 41
3.7.6 Additional Exercise for the Readerp. 43
3.7.7 The Rigid-Lid Approximationp. 43
3.8 Internal Wavesp. 44
3.8.1 Theoryp. 44
3.8.2 Normal Wave Modesp. 45
3.9 Exercise 5: Internal Wavesp. 46
3.9.1 Aimp. 46
3.9.2 Task Descriptionp. 46
3.9.3 Resultsp. 47
3.9.4 Additional Exercise for the Readerp. 48
3.10 Mechanical Turbulencep. 48
3.10.1 Kelvin-Helmholtz Instabilityp. 48
3.10.2 Instability of a Stratified Shear Flowp. 49
3.11 Exercise 6: Kelvin-Helmholtz Instabilityp. 50
3.11.1 Aimp. 50
3.11.2 Task Descriptionp. 51
3.11.3 Cyclic Boundary Conditionsp. 51
3.11.4 Resultsp. 52
3.11.5 Additional Exercise for the Readerp. 53
3.12 Lee Waves and the Froude Numberp. 53
3.12.1 The Hydraulic Jumpp. 53
3.13 Exercise 7: Lee Wavesp. 54
3.13.1 Task Descriptionp. 54
3.13.2 Results: Continuous Density Stratificationp. 55
3.13.3 Results: Two-Layer Stratificationp. 56
3.13.4 Additional Exercise for the Readerp. 57
3.14 Oceanic Convectionp. 57
3.14.1 Backgroundp. 57
3.14.2 Free Convectionp. 57
3.14.3 The Flux-Rayleigh Numberp. 58
3.14.4 Aspect Ratio of Convection Cellsp. 59
3.14.5 Convective Mixed-Layer Deepeningp. 59
3.15 Exercise 8: Free Convectionp. 60
3.15.1 Aimp. 60
3.15.2 Task Descriptionp. 61
3.15.3 A Trick to Avoid Substantial Round-off Errorsp. 62
3.15.4 Inclusion of Momentum Diffusion and Bottom Frictionp. 62
3.15.5 Resultsp. 64
3.15.6 Additional Exercise for the Readerp. 65
3.16 Exercise 9: Convective Entrainmentp. 65
3.16.1 How It Worksp. 65
3.16.2 Entrainment Velocityp. 65
3.16.3 Task Descriptionp. 66
3.16.4 Resultsp. 66
3.16.5 Additional Exercises for the Readerp. 67
3.17 Exercise 10: Slope Convection near the Shorep. 67
3.17.1 Backgroundp. 67
3.17.2 Implementation of Bottom Friction on a Sloping Terrainp. 68
3.17.3 Task Descriptionp. 68
3.17.4 Resultsp. 70
3.17.5 Additional Exercise for the Readerp. 71
3.18 Double Diffusionp. 72
3.18.1 Backgroundp. 72
3.18.2 Double-Diffusive Instabilityp. 72
3.18.3 Double-Diffusive Layeringp. 73
3.18.4 The Gradient Ratio and the Turner Anglep. 73
3.19 Exercise 11: Double-Diffusive Instabilityp. 74
3.19.1 Aimp. 74
3.19.2 Task Descriptionp. 74
3.19.3 Resultsp. 75
3.20 Exercise 12: Double-Diffusive Layeringp. 77
3.20.1 Aimp. 77
3.20.2 Task Descriptionp. 77
3.20.3 Resultsp. 78
3.20.4 Additional Exercises for the Readerp. 79
3.21 Tilted Coordinate Systemsp. 79
3.21.1 The Governing Equationsp. 79
3.22 Exercise 13: Stratified Flows on a Slopep. 81
3.22.1 Aimp. 81
3.22.2 Task Descriptionp. 81
3.22.3 Resultsp. 82
3.22.4 Additional Exercise for the Readerp. 83
3.23 Estuariesp. 83
3.23.1 Definitionp. 83
3.23.2 Classification of Estuaries According to Originp. 84
3.23.3 The Dynamics of Positive Estuariesp. 84
3.23.4 Brief Overview of Tidesp. 84
3.23.5 Dynamic Theory of Tidesp. 85
3.23.6 Tides in Estuariesp. 85
3.23.7 Tidal Patternsp. 86
3.23.8 Classification of Estuaries According to Stratification and Circulationp. 86
3.23.9 Transport Timescales in Estuariesp. 87
3.24 Exercise 14: Positive Estuariesp. 89
3.24.1 Aimp. 89
3.24.2 Task Descriptionp. 89
3.24.3 Implementation of Variable Channel Widthp. 91
3.24.4 Advanced Turbulence Closurep. 91
3.24.5 Resultsp. 92
3.24.6 Additional Exercises for the Readerp. 93
3.25 Exercise 15: Inverse Estuariesp. 94
3.25.1 Aimp. 94
3.25.2 Task Descriptionp. 94
3.25.3 Resultsp. 95
3.25.4 Additional Exercise for the Readerp. 96
4 2.5D Vertical Slice Modellingp. 97
4.1 The Basisp. 97
4.1.1 Adding Another Half Dimensionp. 97
4.1.2 The Geostrophic Balancep. 97
4.1.3 Scalingp. 99
4.1.4 Conservation of Potential Vorticityp. 99
4.1.5 Geostrophic Adjustmentp. 100
4.1.6 The 2.5d Shallow-Water Modelp. 101
4.1.7 Implementation of the Coriolis Forcep. 101
4.1.8 Potential Problemsp. 102
4.2 Exercise 16: Geostrophic Adjustmentp. 103
4.2.1 Aimp. 103
4.2.2 Task Descriptionp. 103
4.2.3 Resultsp. 104
4.2.4 Additional Exercise for the Readerp. 105
4.3 Exercise 17: Tidal-Mixing Frontsp. 106
4.3.1 Backgroundp. 106
4.3.2 Task Descriptionp. 106
4.3.3 Resultsp. 107
4.3.4 Additional Studyp. 109
4.3.5 Results and Discussionp. 109
4.3.6 Additional Exercises for the Readerp. 110
4.4 Coastal Upwellingp. 110
4.4.1 Backgroundp. 110
4.4.2 How Does It Work?p. 111
4.4.3 Partial and Full Upwellingp. 111
4.4.4 The Upwelling Indexp. 113
4.5 Exercise 18: Coastal Upwelling and Downwellingp. 113
4.5.1 Aimp. 113
4.5.2 Task Descriptionp. 113
4.5.3 Advanced Turbulence Closurep. 114
4.5.4 Results: Upwelling Scenariop. 115
4.5.5 Additional Exercise for the Readerp. 116
4.5.6 Results: Downwelling Scenariop. 116
4.5.7 Additional Exercise for the Readerp. 117
4.6 Exercise 19: Ekman Pumpingp. 118
4.6.1 Theoretical Backgroundp. 118
4.6.2 Aimp. 118
4.6.3 Task Descriptionp. 118
4.6.4 Results: Scenario 1p. 120
4.6.5 Results: Scenario 2p. 122
4.6.6 Results: Scenario 3p. 123
4.6.7 Additional Exercises for the Readerp. 124
5 3D Level Modellingp. 125
5.1 The Basic Equationsp. 125
5.1.1 The Basicsp. 125
5.1.2 Conservation of Momentump. 125
5.1.3 Conservation of Volumep. 126
5.1.4 Evolution of the Density Fieldp. 127
5.2 Numerical Treatmentp. 127
5.2.1 The 3d Arakawa C-gridp. 127
5.2.2 Treatment of the Advection Termsp. 128
5.2.3 The Nonhydrostatic Solver of the Momentum Equationsp. 129
5.2.4 Stability Criteriap. 130
5.3 Exercise 20: Geostrophic Adjustment in 3Dp. 131
5.3.1 Aimp. 131
5.3.2 Task Descriptionp. 131
5.3.3 Resultsp. 132
5.3.4 Additional Exercise for the Readerp. 132
5.4 Exercise 21: Eddy Formation in a Straitp. 133
5.4.1 Backgroundp. 133
5.4.2 Aimp. 134
5.4.3 Task Descriptionp. 134
5.4.4 Creation of Variable Bathymetryp. 136
5.4.5 Resultsp. 136
5.4.6 Bathymetry Creationp. 137
5.4.7 Additional Exercises for the Readerp. 137
5.5 Exercise 22: Exchange Flow Through a Straitp. 137
5.5.1 Aimp. 137
5.5.2 Mediterranean Seasp. 138
5.5.3 Task Descriptionp. 139
5.5.4 Resultsp. 140
5.5.5 Additional Exercise for the Readerp. 142
5.6 Exercise 23: Coastal Upwelling in 3Dp. 142
5.6.1 Aimp. 142
5.6.2 Task Descriptionp. 142
5.6.3 Resultsp. 143
5.6.4 Additional Exercise for the Readerp. 145
5.6.5 Time-Splitting Methodsp. 145
5.7 The Thermohaline Circulationp. 146
5.7.1 The Abyssal Circulationp. 146
5.7.2 The Stommel-Arons Modelp. 146
5.8 Exercise 24: The Abyssal Circulationp. 148
5.8.1 Aimp. 148
5.8.2 Task Descriptionp. 148
5.8.3 Resultsp. 150
5.8.4 Additional Exercise for the Readerp. 152
5.8.5 Improved Float Trackingp. 152
5.9 The Equatorial Barrierp. 155
5.9.1 Inertial Oscillations About the Equatorp. 155
5.9.2 Variation to Exercise 24p. 156
5.9.3 Resultsp. 156
5.9.4 Additional Exercise for the Readerp. 157
5.10 Equatorial Wavesp. 158
5.10.1 Backgroundp. 158
5.10.2 Equatorial Kelvin Wavesp. 158
5.10.3 Other Equatorially Trapped Wavesp. 159
5.11 The El-Niño Southern Oscillationp. 161
5.11.1 Backgroundp. 161
5.12 Exercise 25: Simulation of an El-Niño Eventp. 162
5.12.1 Aimp. 162
5.12.2 Task Descriptionp. 162
5.12.3 The Smagorinsky Turbulence Closure Schemep. 164
5.12.4 Warningp. 164
5.12.5 Resultsp. 164
5.12.6 Additional Exercises for the Readerp. 165
5.13 Advanced Lateral Boundary Conditionsp. 166
5.13.1 Backgroundp. 166
5.13.2 Consistencyp. 166
5.13.3 Inflow Conditionsp. 166
5.13.4 Outflow Conditionsp. 167
5.13.5 Zero-Gradient Conditionsp. 168
5.13.6 Radiation Conditionsp. 169
5.13.7 Sponge Layers and Low-Pass Grid Filtersp. 170
5.14 Final Remarkp. 171
5.15 Technical Informationp. 171
Bibliographyp. 173
List of Exercisesp. 177
Indexp. 179