Cover image for Springer handbook of electronic and photonic materials
Title:
Springer handbook of electronic and photonic materials
Publication Information:
New York, NY : Springer, 2006
Physical Description:
1v + 1 CD-ROM
ISBN:
9780387260594
General Note:
Accompanied by compact disc : CP 10284

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010125164 TK7871 S67 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Contributions from well known and respected researchers throughout the world

Thorough coverage of electronic and opto-electronic materials that today's electrical engineers, material scientists and physicists need

Interdisciplinary approach encompasses research in disciplines such as materials science, electrical engineering, chemical engineering, mechanical engineering, physics and chemistry


Author Notes

Safa Kasap is currently a Professor and Canada Research Chair in Electronic Materials and Devices in the Electrical Engineering Department at the University of Saskatchewan, Canada. He obtained his BSc (1976), MSc (1978) and PhD (1983) degrees from the Imperial College of Science, Technology and Medicine, University of London, specializing in amorphous semiconductors and chalcogenide glasses. In 1996 he was awarded the DSc (Engineering) from London University for his research contributions to materials science in electrical engineering. He is a Fellow of the Institution of Electrical Engineers, the Institute of Physics and the Institute of Materials. His research interests are in amorphous semiconductors, glasses for photonics, photoconductors, electrical, optical and thermal properties of materials, and related topics, with more than one hundred refereed journal papers in these areas. He is the Deputy Editor of the Journal of Materials Science: Materials in Electronics (Springer), and a Series Editor for the Series on Materials in Electronic and Optoelectronics (Wiley).

Peter Capper has worked for the same company (through several name changes) for over 30 years in the area of II-VI compounds for infrared applications, latterly as a Materials Team Leader in charge of group of scientists working on the growth and characterisation of these compounds. This has been mainly in the area of cadmium mercury telluride and cadmium telluride, the premier infrared materials, by a range of bulk and epitaxial techniques. He has given several invited talks in Japan, USA and Europe, has coauthored over 100 Journal papers, holds one patent and has edited/written 5 books in the field since 1987. He is on the Editorial Board of the J. Mater. Sci.: Mater. Electron. (Springer) and is a Series Editor for Wiley on Materials for Electronics and Optoelectronics.


Table of Contents

List of Abbreviationsp. XXIX
Introduction
1 Perspectives on Electronic and Optoelectronic Materialsp. 3
1.1 The Early Yearsp. 4
1.2 The Silicon Agep. 4
1.3 The Compound Semiconductorsp. 8
1.4 From Faraday to Todayp. 14
Referencesp. 14
Part A Fundamental Properties
2 Electrical Conduction in Metals and Semiconductorsp. 19
2.1 Fundamentals: Drift Velocity, Mobility and Conductivityp. 20
2.2 Matthiessen's Rulep. 22
2.3 Resistivity of Metalsp. 23
2.4 Solid Solutions and Nordheim's Rulep. 26
2.5 Carrier Scattering in Semiconductorsp. 28
2.6 The Boltzmann Transport Equationp. 29
2.7 Resistivity of Thin Polycrystalline Filmsp. 30
2.8 Inhomogeneous Media. Effective Media Approximationp. 32
2.9 The Hall Effectp. 35
2.10 High Electric Field Transportp. 37
2.11 Avalanchep. 38
2.12 Two-Dimensional Electron Gasp. 39
2.13 One Dimensional Conductancep. 41
2.14 The Quantum Hall Effectp. 42
Referencesp. 44
3 Optical Properties of Electronic Materials: Fundamentals and Characterizationp. 47
3.1 Optical Constantsp. 47
3.2 Refractive Indexp. 50
3.3 Optical Absorptionp. 53
3.4 Thin Film Opticsp. 70
3.5 Optical Materialsp. 74
Referencesp. 76
4 Magnetic Properties of Electronic Materialsp. 79
4.1 Traditional Magnetismp. 81
4.2 Unconventional Magnetismp. 93
Referencesp. 99
5 Defects in Monocrystalline Siliconp. 101
5.1 Technological Impact of Intrinsic Point Defects Aggregatesp. 102
5.2 Thermophysical Properties of Intrinsic Point Defectsp. 103
5.3 Aggregates of Intrinsic Point Defectsp. 104
5.4 Formation of OSF Ringp. 115
Referencesp. 117
6 Diffusion in Semiconductorsp. 121
6.1 Basic Conceptsp. 122
6.2 Diffusion Mechanismsp. 122
6.3 Diffusion Regimesp. 123
6.4 Internal Electric Fieldsp. 126
6.5 Measurement of Diffusion Coefficientsp. 126
6.6 Hydrogen in Semiconductorsp. 127
6.7 Diffusion in Group IV Semiconductorsp. 128
6.8 Diffusion in III-V Compoundsp. 130
6.9 Diffusion in II-VI Compoundsp. 131
6.10 Conclusionsp. 133
6.11 General Reading and Referencesp. 133
Referencesp. 133
7 Photoconductivity in Materials Researchp. 137
7.1 Steady State Photoconductivity Methodsp. 138
7.2 Transient Photoconductivity Experimentsp. 142
Referencesp. 146
8 Electronic Properties of Semiconductor Interfacesp. 147
8.1 Experimental Databasep. 149
8.2 IFIGS-and-Electronegativity Theoryp. 153
8.3 Comparison of Experiment and Theoryp. 155
8.4 Final Remarksp. 159
Referencesp. 159
9 Charge Transport in Disordered Materialsp. 161
9.1 General Remarks on Charge Transport in Disordered Materialsp. 163
9.2 Charge Transport in Disordered Materials via Extended Statesp. 167
9.3 Hopping Charge Transport in Disordered Materials via Localized Statesp. 169
9.4 Concluding Remarksp. 184
Referencesp. 185
10 Dielectric Responsep. 187
10.1 Definition of Dielectric Responsep. 188
10.2 Frequency-Dependent Linear Responsesp. 190
10.3 Information Contained in the Relaxation Responsep. 196
10.4 Charge Transportp. 208
10.5 A Few Final Commentsp. 211
Referencesp. 211
11 Ionic Conduction and Applicationsp. 213
11.1 Conduction in Ionic Solidsp. 214
11.2 Fast Ion Conductionp. 216
11.3 Mixed Ionic-Electronic Conductionp. 221
11.4 Applicationsp. 223
11.5 Future Trendsp. 226
Referencesp. 226
Part B Growth and Characterization
12 Bulk Crystal Growth - Methods and Materialsp. 231
12.1 Historyp. 232
12.2 Techniquesp. 233
12.3 Materials Grownp. 240
12.4 Conclusionsp. 251
Referencesp. 251
13 Single-Crystal Silicon: Growth and Propertiesp. 255
13.1 Overviewp. 256
13.2 Starting Materialsp. 257
13.3 Single-Crystal Growthp. 258
13.4 New Crystal Growth Methodsp. 266
Referencesp. 268
14 Epitaxial Crystal Growth: Methods and Materialsp. 271
14.1 Liquid-Phase Epitaxy (LPE)p. 271
14.2 Metalorganic Chemical Vapor Deposition (MOCVD)p. 280
14.3 Molecular Beam Epitaxy (MBE)p. 290
Referencesp. 299
15 Narrow-Bandgap II-VI Semiconductors: Growthp. 303
15.1 Bulk Growth Techniquesp. 304
15.2 Liquid-Phase Epitaxy (LPE)p. 308
15.3 Metalorganic Vapor Phase Epitaxy (MOVPE)p. 312
15.4 Molecular Beam Epitaxy (MBE)p. 317
15.5 Alternatives to CMTp. 320
Referencesp. 321
16 Wide-Bandgap II-VI Semiconductors: Growth and Propertiesp. 325
16.1 Crystal Propertiesp. 326
16.2 Epitaxial Growthp. 328
16.3 Bulk Crystal Growthp. 333
16.4 Conclusionsp. 339
Referencesp. 340
17 Structural Characterizationp. 343
17.1 Radiation-Material Interactionsp. 344
17.2 Particle-Material Interactionsp. 345
17.3 X-Ray Diffractionp. 348
17.4 Optics, Imaging and Electron Diffractionp. 351
17.5 Characterizing Functional Activityp. 362
17.6 Sample Preparationp. 362
17.7 Case Studies - Complementary Characterization of Electronic and Optoelectronic Materialsp. 364
17.8 Concluding Remarksp. 370
Referencesp. 370
18 Surface Chemical Analysisp. 373
18.1 Electron Spectroscopyp. 373
18.2 Glow-Discharge Spectroscopies (GDOES and GDMS)p. 376
18.3 Secondary Ion Mass Spectrometry (SIMS)p. 377
18.4 Conclusionp. 384
19 Thermal Properties and Thermal Analysis: Fundamentals, Experimental Techniques and Applicationsp. 385
19.1 Heat Capacityp. 386
19.2 Thermal Conductivityp. 391
19.3 Thermal Expansionp. 396
19.4 Enthalpic Thermal Propertiesp. 398
19.5 Temperature-Modulated DSC (TMDSC)p. 403
Referencesp. 406
20 Electrical Characterization of Semiconductor Materials and Devicesp. 409
20.1 Resistivityp. 410
20.2 Hall Effectp. 418
20.3 Capacitance-Voltage Measurementsp. 421
20.4 Current-Voltage Measurementsp. 426
20.5 Charge Pumpingp. 428
20.6 Low-Frequency Noisep. 430
20.7 Deep-Level Transient Spectroscopyp. 434
Referencesp. 436
Part C Materials for Electronics
21 Single-Crystal Silicon: Electrical and Optical Propertiesp. 441
21.1 Silicon Basicsp. 441
21.2 Electrical Propertiesp. 451
21.3 Optical Propertiesp. 472
Referencesp. 478
22 Silicon-Germanium: Properties, Growth and Applicationsp. 481
22.1 Physical Properties of Silicon-Germaniump. 482
22.2 Optical Properties of SiGep. 488
22.3 Growth of Silicon-Germaniump. 492
22.4 Polycrystalline Silicon-Germaniump. 494
Referencesp. 497
23 Gallium Arsenidep. 499
23.1 Bulk Growth of GaAsp. 502
23.2 Epitaxial Growth of GaAsp. 507
23.3 Diffusion in Gallium Arsenidep. 511
23.4 Ion Implantation into GaAsp. 513
23.5 Crystalline Defects in GaAsp. 514
23.6 Impurity and Defect Analysis of GaAs (Chemical)p. 517
23.7 Impurity and Defect Analysis of GaAs (Electrical)p. 518
23.8 Impurity and Defect Analysis of GaAs (Optical)p. 521
23.9 Assessment of Complex Heterostructuresp. 522
23.10 Electrical Contacts to GaAsp. 524
23.11 Devices Based on GaAs (Microwave)p. 524
23.12 Devices based on GaAs (Electro-optical)p. 527
23.13 Other Uses for GaAsp. 532
23.14 Conclusionsp. 532
Referencesp. 533
24 High-Temperature Electronic Materials: Silicon Carbide and Diamondp. 537
24.1 Material Properties and Preparationp. 540
24.2 Electronic Devicesp. 547
24.3 Summaryp. 557
Referencesp. 558
25 Amorphous Semiconductors: Structure, Optical, and Electrical Propertiesp. 565
25.1 Electronic Statesp. 565
25.2 Structural Propertiesp. 568
25.3 Optical Propertiesp. 570
25.4 Electrical Propertiesp. 573
25.5 Light-Induced Phenomenap. 575
25.6 Nanosized Amorphous Structurep. 577
Referencesp. 578
26 Amorphous and Microcrystalline Siliconp. 581
26.1 Reactions in SiH[subscript 4] and SiH[subscript 4]/H[subscript 2] Plasmasp. 581
26.2 Film Growth on a Surfacep. 583
26.3 Defect Density Determination for a-Si:H and [Mu]c-Si:Hp. 589
26.4 Device Applicationsp. 590
26.5 Recent Progress in Material Issues Related to Thin-Film Silicon Solar Cellsp. 591
26.6 Summaryp. 594
Referencesp. 594
27 Ferroelectric Materialsp. 597
27.1 Ferroelectric Materialsp. 601
27.2 Ferroelectric Materials Fabrication Technologyp. 608
27.3 Ferroelectric Applicationsp. 616
Referencesp. 622
28 Dielectric Materials for Microelectronicsp. 625
28.1 Gate Dielectricsp. 630
28.2 Isolation Dielectricsp. 647
28.3 Capacitor Dielectricsp. 647
28.4 Interconnect Dielectricsp. 651
28.5 Summaryp. 653
Referencesp. 653
29 Thin Filmsp. 659
29.1 Deposition Methodsp. 661
29.2 Structurep. 682
29.3 Propertiesp. 692
29.4 Concluding Remarksp. 708
Referencesp. 711
30 Thick Filmsp. 717
30.1 Thick Film Processingp. 718
30.2 Substratesp. 720
30.3 Thick Film Materialsp. 721
30.4 Components and Assemblyp. 724
30.5 Sensorsp. 728
Referencesp. 731
Part D Materials for Optoelectronics and Photonics
31 III-V Ternary and Quaternary Compoundsp. 735
31.1 Introduction to III-V Ternary and Quaternary Compoundsp. 735
31.2 Interpolation Schemep. 736
31.3 Structural Parametersp. 737
31.4 Mechanical, Elastic and Lattice Vibronic Propertiesp. 739
31.5 Thermal Propertiesp. 741
31.6 Energy Band Parametersp. 743
31.7 Optical Propertiesp. 748
31.8 Carrier Transport Propertiesp. 750
Referencesp. 751
32 Group III Nitridesp. 753
32.1 Crystal Structures of Nitridesp. 755
32.2 Lattice Parameters of Nitridesp. 756
32.3 Mechanical Properties of Nitridesp. 757
32.4 Thermal Properties of Nitridesp. 761
32.5 Electrical Properties of Nitridesp. 766
32.6 Optical Properties of Nitridesp. 777
32.7 Properties of Nitride Alloysp. 791
32.8 Summary and Conclusionsp. 794
Referencesp. 795
33 Electron Transport Within the III-V Nitride Semiconductors, GaN, AIN, and InN: A Monte Carlo Analysisp. 805
33.1 Electron Transport Within Semiconductors and the Monte Carlo Simulation Approachp. 806
33.2 Steady-State and Transient Electron Transport Within Bulk Wurtzite GaN, AIN, and InNp. 810
33.3 Electron Transport Within III-V Nitride Semiconductors: A Reviewp. 822
33.4 Conclusionsp. 826
Referencesp. 826
34 II-IV Semiconductors for Optoelectronics: CdS, CdSe, CdTep. 829
34.1 Backgroundp. 829
34.2 Solar Cellsp. 829
34.3 Radiation Detectorsp. 834
34.4 Conclusionsp. 840
Referencesp. 840
35 Doping Aspects of Zn-Based Wide-Band-Gap Semiconductorsp. 843
35.1 ZnSep. 843
35.2 ZnBeSep. 848
35.3 ZnOp. 849
Referencesp. 851
36 II-VI Narrow-Bandgap Semiconductors for Optoelectronicsp. 855
36.1 Applications and Sensor Designp. 858
36.2 Photoconductive Detectors in HgCdTe and Related Alloysp. 860
36.3 Sprite Detectorsp. 864
36.4 Photoconductive Detectors in Closely Related Alloysp. 866
36.5 Conclusions on Photoconductive HgCdTe Detectorsp. 867
36.6 Photovoltaic Devices in HgCdTep. 867
36.7 Emission Devices in II-VI Semiconductorsp. 882
36.8 Potential for Reduced-Dimensionality HgTe-CdTep. 883
Referencesp. 883
37 Optoelectronic Devices and Materialsp. 887
37.1 Introduction to Optoelectronic Devicesp. 888
37.2 Light-Emitting Diodes and Semiconductor Lasersp. 890
37.3 Single-Mode Lasersp. 904
37.4 Optical Amplifiersp. 906
37.5 Modulatorsp. 907
37.6 Photodetectorsp. 911
37.7 Conclusionsp. 914
Referencesp. 915
38 Liquid Crystalsp. 917
38.1 Introduction to Liquid Crystalsp. 917
38.2 The Basic Physics of Liquid Crystalsp. 924
38.3 Liquid-Crystal Devicesp. 931
38.4 Materials for Displaysp. 940
Referencesp. 949
39 Organic Photoconductorsp. 953
39.1 Chester Carlson and Xerographyp. 954
39.2 Operational Considerations and Critical Materials Propertiesp. 956
39.3 OPC Characterizationp. 965
39.4 OPC Architecture and Compositionp. 967
39.5 Photoreceptor Fabricationp. 976
39.6 Summaryp. 977
Referencesp. 978
40 Luminescent Materialsp. 983
40.1 Luminescent Centresp. 985
40.2 Interaction with the Latticep. 987
40.3 Thermally Stimulated Luminescencep. 989
40.4 Optically (Photo-)Stimulated Luminescencep. 990
40.5 Experimental Techniques - Photoluminescencep. 991
40.6 Applicationsp. 992
40.7 Representative Phosphorsp. 995
Referencesp. 995
41 Nano-Engineered Tunable Photonic Crystals in the Near-IR and Visible Electromagnetic Spectrump. 997
41.1 PC Overviewp. 998
41.2 Traditional Fabrication Methodologies for Static PCsp. 1001
41.3 Tunable PCsp. 1011
41.4 Summary and Conclusionsp. 1014
Referencesp. 1015
42 Quantum Wells, Superlattices, and Band-Gap Engineeringp. 1021
42.1 Principles of Band-Gap Engineering and Quantum Confinementp. 1022
42.2 Optoelectronic Properties of Quantum-Confined Structuresp. 1024
42.3 Emittersp. 1032
42.4 Detectorsp. 1034
42.5 Modulatorsp. 1036
42.6 Future Directionsp. 1037
42.7 Conclusionsp. 1038
Referencesp. 1038
43 Glasses for Photonic Integrationp. 1041
43.1 Main Attributes of Glasses as Photonic Materialsp. 1042
43.2 Glasses for Integrated Opticsp. 1050
43.3 Laser Glasses for Integrated Light Sourcesp. 1053
43.4 Summaryp. 1057
Referencesp. 1059
44 Optical Monlinearity in Photonic Glassesp. 1063
44.1 Third-Order Nonlinearity in Homogeneous Glassp. 1064
44.2 Second-Order Nonlinearity in Poled Glassp. 1069
44.3 Particle-Embedded Systemsp. 1070
44.4 Photoinduced Phenomenap. 1071
44.5 Summaryp. 1072
Referencesp. 1072
45 Nonlinear Optoelectronic Materialsp. 1075
45.1 Backgroundp. 1075
45.2 Illumination-Dependent Refractive Index and Nonlinear Figures of Merit (FOM)p. 1077
45.3 Bulk and Multi-Quantum-Well (MQW) Inorganic Crystalline Semiconductorsp. 1080
45.4 Organic Materialsp. 1084
45.5 Nanocrystalsp. 1087
45.6 Other Nonlinear Materialsp. 1088
45.7 Conclusionsp. 1089
Referencesp. 1089
Part E Novel Materials and Selected Applications
46 Solar Cells and Photovoltaicsp. 1095
46.1 Figures of Merit for Solar Cellsp. 1096
46.2 Crystalline Siliconp. 1098
46.3 Amorphous Siliconp. 1100
46.4 GaAs Solar Cellsp. 1101
46.5 CdTe Thin-Film Solar Cellsp. 1102
46.6 CulnGaSe[subscript 2] (CIGS) Thin-Film Solar Cellsp. 1103
46.7 Conclusionsp. 1104
Referencesp. 1105
47 Silicon on Mechanically Flexible Substrates for Large-Area Electronicsp. 1107
47.1 a-Si:H TFTs on Flexible Substratesp. 1108
47.2 Field-Effect Transport in Amorphous Filmsp. 1108
47.3 Electronic Transport Under Mechanical Stressp. 1113
Referencesp. 1118
48 Photoconductors for X-Ray Image Detectorsp. 1121
48.1 X-Ray Photoconductorsp. 1123
48.2 Metrics of Detector Performancep. 1131
48.3 Conclusionp. 1136
Referencesp. 1136
49 Phase-Change Optical Recordingp. 1139
49.1 Digital Versatile Discs (DVDs)p. 1140
49.2 Super-RENS Discsp. 1144
49.3 In Lieu of Conclusionp. 1145
Referencesp. 1145
50 Carbon Nanotubes and Bucky Materialsp. 1147
50.1 Carbon Nanotubesp. 1147
50.2 Bucky Materialsp. 1153
Referencesp. 1153
51 Magnetic Information-Storage Materialsp. 1155
51.1 Magnetic Recording Technologyp. 1156
51.2 Magnetic Random-Access Memoryp. 1185
51.3 Extraordinary Magnetoresistance (EMR)p. 1189
51.4 Summaryp. 1189
Referencesp. 1189
52 High-Temperature Superconductorsp. 1193
52.1 The Superconducting Statep. 1195
52.2 Cuprate High-T[subscript c] Superconductors: An Overviewp. 1202
52.3 Physical Properties of Cuprate Superconductorsp. 1207
52.4 Superconducting Filmsp. 1212
52.5 The Special Case of MgB[subscript 2]p. 1214
52.6 Summaryp. 1216
Referencesp. 1216
53 Molecular Electronicsp. 1219
53.1 Electrically Conductive Organic Compoundsp. 1220
53.2 Materialsp. 1223
53.3 Plastic Electronicsp. 1225
53.4 Molecular-Scale Electronicsp. 1229
53.5 DNA Electronicsp. 1235
53.6 Conclusionsp. 1236
Referencesp. 1237
54 Organic Materials for Chemical Sensingp. 1241
54.1 Analyte Requirementsp. 1242
54.2 Brief Review of Inorganic Materialsp. 1243
54.3 Macrocylic Compounds for Sensingp. 1245
54.4 Sensing with Phthalocyanine and Porphyrinp. 1250
54.5 Polymeric Materialsp. 1255
54.6 Cavitand Moleculesp. 1259
54.7 Concluding Remarksp. 1261
Referencesp. 1262
55 Packaging Materialsp. 1267
55.1 Package Applicationsp. 1268
55.2 The Materials Challenge of Electronic Packagingp. 1269
55.3 Materials Coefficient of Thermal Expansionp. 1272
55.4 Wirebond Materialsp. 1272
55.5 Solder Interconnectsp. 1273
55.6 Substratesp. 1278
55.7 Underfill and Encapsulantsp. 1280
55.8 Electrically Conductive Adhesives (ECAs)p. 1281
55.9 Thermal Issuesp. 1283
55.10 Summaryp. 1284
Referencesp. 1285
Acknowledgementsp. 1287
About the Authorsp. 1291
Detailed Contentsp. 1307
Glossary of Defining Termsp. 1333
Subject Indexp. 1367