Cover image for Edible nanostructures : a bottom-up approach
Title:
Edible nanostructures : a bottom-up approach
Publication Information:
Cambridge, UK : Royal Society of Chemistry, 2015
Physical Description:
xiii, 313 pages : illustrations (some color) ; 24 cm.
ISBN:
9781849738958
Abstract:
"Food Scientists have been teaching the subject in the same way for the past fifty years. This book therefore aims to modernise the coverage of the subject, bringing it in line with the recent and extensive developments in Materials Science; in particular, the field of supramolecular chemistry of food components has been generally overlooked in textbooks. Edible Nanostructures will summarise developments in the areas of protein aggregation and gelation, starch crystallography, emulsions, and fat crystal network nanostructure and microstructure, addressing their functionalities in food. Each chapter offers both the qualitative view and a basic quantitative treatment of the area, including basic models used to describe structure and its relationship to functionality, if they exist. This is the first book on nanostructures in foods, and is suitable as a textbook for undergraduate students in Chemistry, Physics and Food Science."--publisher's description

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010344856 TX541 E33 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

Food Scientists have been teaching the subject in the same way for the past fifty years. This book therefore aims to modernise the coverage of the subject, bringing it in line with the recent and extensive developments in Materials Science; in particular, the field of supramolecular chemistry of food components has been generally overlooked in textbooks. Edible Nanostructures will summarise developments in the areas of protein aggregation and gelation, starch crystallography, emulsions, and fat crystal network nanostructure and microstructure, addressing their functionalities in food. Each chapter offers both the qualitative view and a basic quantitative treatment of the area, including basic models used to describe structure and its relationship to functionality, if they exist.

This is the first book on nanostructures in foods, and is suitable as a textbook for undergraduate students in Chemistry, Physics and Food Science.


Table of Contents

Alejandro G. Marangoni and David A. PinkChloe O'Sullivan and Nuria Acevedo and Fernanda Peyronel and Alejandro G. MarangoniVassilis KontogiorgosOwen Griffith JonesConstantinos V. NikiforidisMichael A. RogersDongming Tang and Kenneth J. ChomistekAlexandra K. SmithDavid A. Pink and M. Shajahan G. Razul and T. Gordon and B. Quinn and A. J. MacDonald
Chapter 1 Edible Nanostructures: Introductionp. 1
Referencesp. 5
Chapter 2 Fat Nanostructurep. 6
2.1 Introductionp. 6
2.1.1 Edible Fats and Oils in Our Dietp. 6
2.1.2 Fat Structure-Functionality Relationshipsp. 8
2.2 Edible Lipid Chemistryp. 9
2.2.1 Lipid Componentsp. 9
2.2.2 Physicochemical Properties of Fatsp. 13
2.3 Crystallization Behaviourp. 16
2.3.1 Nucleationp. 17
2.3.2 Crystal Growth Kineticsp. 18
2.3.3 Polymorphismp. 19
2.4 Crystal Structure Hierarchyp. 22
2.4.1 Nanoplateletsp. 23
2.4.2 Crystal Aggregatesp. 25
2.5 Modifying Crystal Structurep. 29
2.5.1 Supersaturation and Solid Fat Contentp. 29
2.5.2 Crystallization Temperature and Cooling Ratep. 31
2.5.3 Shear Processingp. 32
2.5.4 Interesterificationp. 35
2.5.5 Emulsifiersp. 36
2.6 Conclusionsp. 36
Referencesp. 37
Chapter 3 Polysaccharide Nanostructuresp. 41
3.1 Introductionp. 41
3.2 Polysaccharide Sources and Compositionp. 44
3.3 Polysaccharide Conformationsp. 45
3.4 Structuring using Polysaccharides: High Moisture Regimep. 51
3.5 Structuring using Polysaccharides: Low Moisture Regimep. 59
3.6 Conclusionsp. 64
Referencesp. 65
Chapter 4 Protein Nanostructuresp. 69
4.1 Proteins as Materialsp. 69
4.1.1 Protein Sources in Foodp. 72
4.1.2 Physical Properties of Proteinsp. 74
4.2 Classes of Protein Nanostructurep. 79
4.2.1 An Example from Nature: the Casein Micellep. 79
4.2.2 Electrostatic Complexesp. 82
4.2.3 Self-assembled Conjugatesp. 85
4.2.4 Simple Coacervate Structuresp. 87
4.2.5 Desolvated Nanoparticlesp. 89
4.2.6 Emulsion-templated Nanoparticlesp. 92
4.2.7 Microgelsp. 93
4.2.8 Fibrillar Protein Structuresp. 97
4.3 Predicting Future Trends in Protein Nanostructuresp. 104
4.4 Conclusionsp. 106
Referencesp. 107
Chapter 5 Lipid Mesophase Nanostructuresp. 114
5.1 Introductionp. 114
5.2 Polymorphism of Lipid Mesophasesp. 115
5.2.1 Self-assembled Structuresp. 115
5.2.2 Packing Geometryp. 117
5.3 Identification of Self-assembly Structuresp. 121
5.3.1 Polarized Optical Microscopyp. 121
5.3.2 Cryo-Transmission Electron Microscopy (cryo-TEM)p. 122
5.3.3 Cryogenic Field Emission Scanning Electron Microscopy (cryo-FESEM)p. 124
5.3.4 X-Ray Diffraction (XRD)p. 124
5.3.5 Small Angle X-Ray and Neutron Scattering (SAXS/SANS)p. 125
5.3.6 Rheologyp. 128
5.4 Edible Applications of Lipid Mesophasesp. 130
5.4.1 Protection and Controlled Release of Functional Compoundsp. 130
5.4.2 Chemical Reactivityp. 132
5.4.3 Structuring Edible Lipid Materialp. 133
5.4.4 Emulsifying Propertiesp. 135
5.5 Conclusionsp. 137
Acknowledgementp. 138
Referencesp. 138
Chapter 6 Self-assembled Fibrillar Networks of Low Molecular Weight Oleogelatorsp. 144
6.1 Introducing Self-assembled Fibrillar Networksp. 144
6.1.1 The Gel Statep. 144
6.1.2 Self-assembled Fibrillar Networks vs. Polymeric Gelsp. 145
6.2 Mechanisms Governing Self-assembly in Molecular Gelsp. 146
6.2.1 Nucleation (0D-1D Transformations)p. 146
6.2.2 Fibrillar Growth of Small Molecules and Crystallographic Mismatchesp. 149
6.3 Fatty Acid Low Molecular Weight Oleogelatorsp. 151
6.3.1 Role of Chirality in Oleogelationp. 152
6.3.2 Role of the Position of Hydroxyl Groups in Organogelationp. 154
6.3.3 12-Hydroxystearic Acid Oleogelsp. 154
6.4 Low Molecular Weight Sugar-derived Oleogelatorsp. 157
6.4.1 Diversity of Sugar Oleogelatorsp. 157
6.4.2 Role of Solvent Structure in Oleogel Formationp. 158
6.5 Peptide-based Molecular Gelsp. 163
6.5.1 Peptide SAFiNs Composed of ß-Sheetsp. 163
6.5.2 Peptide SAFiNs Composed of ¿-Helicesp. 166
6.6 SAFiNs Arising from Multi-component Systemsp. 166
6.6.1 Phytosterols and ¿-Oryzanolp. 166
6.7 Conclusionsp. 173
Referencesp. 173
Chapter 7 Nanoemulsionsp. 179
7.1 Introductionp. 179
7.2 The Moleculesp. 182
7.2.1 The HLB Concept of Emulsifiersp. 182
7.2.2 Critical Packing Parameter (CPP) and Spontaneous Emulsificationp. 183
7.2.3 Microemulsion Phase Behaviorp. 185
7.2.4 Stability of Nanoemulsions and Ostwald Ripeningp. 186
7.3 Sources of Emulsifiers for Edible Nanoemulsionsp. 187
7.3.1 Polyoxyethylene (20) Sorbitan Esters (Polysorbates or Tweens)p. 188
7.3.2 Sucrose Estersp. 189
7.3.3 Lecithinp. 190
7.3.4 Food- or GRAS-Grade Polymeric Emulsifiersp. 191
7.3.5 Recent Advances in Nanoemulsion Emulsifiersp. 192
7.4 Methods of Preparationp. 194
7.4.1 Low Energy Emulsification Methodsp. 194
7.4.2 High Energy Processingp. 196
7.5 An Example of Nanoemulsion Preparation: a Nano-clear Omega-3 Oil-in-Water Emulsionp. 204
7.6 Conclusionsp. 205
Referencesp. 206
Chapter 8 Imaging Nanostucturep. 210
8.1 Introductionp. 210
8.2 Transmission Electron Microscopyp. 212
8.3 Scanning Electron Microscopyp. 217
8.4 Atomic Force Microscopyp. 223
8.5 Conclusionsp. 226
Referencesp. 227
Chapter 9 Computer Simulation Techniques for Modelling Statics and Dynamics of Nanoscale Structuresp. 230
9.1 Introductionp. 230
9.1.1 Protein Foldingp. 231
9.1.2 Edible Oil Structuresp. 232
9.2 Theory I: Some Backgroundp. 234
9.2.1 Statistical Mechanics and Thermodynamicsp. 234
9.2.2 Ensemblesp. 234
9.2.3 Ergodicityp. 235
9.2.4 Boundary Conditions (BCs)p. 235
9.3 Theory II. Molecular Dynamicsp. 236
9.3.1 General Equationsp. 236
9.3.2 Analysis of Data from Molecular Dynamicsp. 240
9.3.3 Empirical Force Fieldsp. 241
9.3.4 The Potential of Mean Force (PMF)p. 244
9.3.5 Carrying out an AMD Simulationp. 245
9.3.6 Molecular Dynamics in Food Science Researchp. 249
9.4 Theory III. Coarse-grained Mesoscale Modelsp. 251
9.4.1 Coarse-grained Interactions: Nano- to Mesoscalep. 251
9.5 Theory IV. Stochastic Processesp. 253
9.5.1 The "Metropolis" Monte Carlo (MMC) Methodp. 253
9.5.2 Structure Functionsp. 257
9.5.3 Kinetic Monte Carlo (KMC) Methodp. 270
9.5.4 Dynamic Monte Carlo (DMC) Methodp. 271
9.5.5 General Commentsp. 272
9.5.6 Applicationsp. 273
9.6 Theory V. Simulating Fluid Dynamicsp. 274
9.7 Dissipative Particle Dynamics (DPD)p. 276
9.7.1 Fundamentalsp. 276
9.7.2 Using ESPResSo DPDp. 280
9.7.3 Simulations Using DPDp. 282
9.7.4 Lattice Boltzmann [L-B] Theoryp. 285
9.8 Conclusionsp. 286
Acknowledgementsp. 287
Referencesp. 287
Subject Indexp. 300