Cover image for Fuzzy control : synthesis and analysis
Title:
Fuzzy control : synthesis and analysis
Publication Information:
Chichester : John Wiley, 2000
ISBN:
9780471986317

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004467605 TJ213 F875 2000 Open Access Book Book
Searching...
Searching...
30000004841486 TJ213 F875 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

Fuzzy Control Synthesis and Analysis Edited by Shehu S. Farinwata Ford Motor Company, Research Laboratory, Dearborn, Michigan, USA Dimitar Filev Ford Motor Company, AMTDC, Redford, Michigan, USA Reza Langari Texas A & M University, College Station, Texas, USA Fuzzy techniques are used to cope with imprecision in the basic elements of a process under control. Written by an international team of researchers this edited volume covers the modeling, analysis and synthesis of fuzzy control systems. Features include:
? Comprehensive coverage of fuzzy dynamical systems, robustness, stability and sensitivity -- giving the reader a good grasp of the fundamentals of fuzzy control
? Focus on the analytical structures of new fuzzy modeling approaches based on the Takagi-Sugeno-Kang (TSK) or Takagi-Sugeno (TS) model
? Applications of fuzzy control to aircraft systems, rocket engines and automotive engines
? Problems and examples illustrating how fuzzy approaches may be applied to the modeling, analysis and synthesis of closed-loop systems
Design and control engineers will value the advanced control techniques and new design and analysis tools presented. Postgraduates studying fuzzy control will find this book a useful reference on synthesis, systems analysis and advanced nonlinear control methods.


Author Notes

Shehu S. Farinwata and Dimitar P. Filev are the authors of Fuzzy Control: Synthesis and Analysis, published by Wiley.


Table of Contents

Editor's Prefacep. xi
List of Contributorsp. xix
About the Editorsp. xxi
Acknowledgmentsp. xxiii
Modelingp. 1
1 Information Granularity in the Analysis and Design of Fuzzy Controllersp. 3
1.1 Introductionp. 3
1.2 The Basic Architecture of the Fuzzy Controller and its Non-linear Relationshipsp. 4
1.3 Set-Based Approximation of Fuzzy Setsp. 7
1.4 Information Granularity of the Rules of the Fuzzy Controllerp. 10
1.4.1 Fuzzy Sets and Information Granularityp. 11
1.5 Robustness Properties of the Fuzzy Controllerp. 13
1.6 Linguistic Information as Inputs of the Fuzzy Controllerp. 17
1.7 Conclusionsp. 21
Acknowledgmentp. 21
Referencesp. 21
2 Fuzzy Modeling for Predictive Controlp. 23
2.1 Introductionp. 23
2.2 Fuzzy Modelingp. 24
2.2.1 Outline of the Modeling Approachp. 24
2.3 Extraction of an Initial Rule Basep. 26
2.4 Simplification and Reduction of the Initial Rule Basep. 27
2.4.1 Similarity Analysisp. 28
2.4.2 Simplification and Reductionp. 28
2.5 Model Predictive Controlp. 30
2.5.1 Basic Principlesp. 30
2.5.2 Optimization in MPCp. 31
2.5.3 The Branch-and-Bound Optimizationp. 32
2.6 Modeling and Control of an HVAC Processp. 34
2.6.1 Initial Modeling of the Systemp. 35
2.6.2 Validating the Initial Modelp. 35
2.6.3 Simplifying the HVAC Modelp. 39
2.6.4 Control Resultsp. 40
2.6.5 Summary of Resultsp. 41
2.7 Concluding Remarksp. 42
Appendix A The Gustafson--Kessel Clustering Algorithmp. 43
Appendix B The Rule Base Simplification Algorithmp. 44
Referencesp. 45
3 Adaptive and Learning Schemes for Fuzzy Modelingp. 47
3.1 Introductionp. 47
3.2 Identification Problems of the TSK Fuzzy Modelsp. 49
3.3 Criteria and Schemes for Learning and Evaluation of Fuzzy Modelsp. 54
3.3.1 The Global Learning Criterion, Q[subscript G]p. 54
3.3.2 The Local Learning Criterion, Q[subscript L]p. 55
3.3.3 Evaluation Criteriap. 56
3.4 Algorithms for Global Learning by Fuzzy Modelsp. 56
3.4.1 Comparison of the Learning Algorithm Using a Numerical Examplep. 59
3.5 Algorithm for Local Learning by Fuzzy Modelsp. 63
3.6 Reinforced Learning Algorithmp. 66
3.7 Simulation Results for Control Applicationsp. 67
3.8 Conclusionsp. 70
Referencesp. 70
4 Fuzzy System Identification with General Parameter Radial Basis Function Neural Networkp. 73
4.1 Introductionp. 73
4.2 Fuzzy Systems through Neural Networksp. 75
4.2.1 Radial Basis Function Neural Networksp. 77
4.3 General Parameter Radial Basis Function Network (GP RBFN)p. 78
4.3.1 General Parameter Method for System Identificationp. 79
4.3.2 GP RBFN Training Algorithmp. 80
4.4 GP RBFN Adaptive Fuzzy Systems (AFSs)p. 81
4.4.1 Basic Algorithmp. 81
4.4.2 Unbiasedness Criterion for the GP RBFN AFSp. 83
4.5 Simulation Resultsp. 84
4.6 Conclusionp. 90
Referencesp. 91
Analysisp. 93
5 Lyapunov Stability Analysis of Fuzzy Dynamic Systemsp. 95
5.1 Introductionp. 95
5.2 Mathematical Preliminariesp. 96
5.3 Construction of Fuzzy Dynamic Models from Discrete-Time Stochastic Modelsp. 97
5.3.1 Construction of Fuzzy Dynamic Models via Fuzzy Compositionp. 98
5.3.2 Construction of a Fuzzy Dynamic Model via the Fuzzy Extension Principlep. 99
5.4 Stability Analysis of Fuzzy Dynamic Systemsp. 99
5.4.1 Convergence in Fuzzy Dynamic Systemsp. 100
5.4.2 Stability of Fuzzy Dynamic Systemsp. 100
5.4.3 The Direct Lyapunov Method for Fuzzy Dynamic Systemsp. 103
5.5 Application--First-Order Fuzzy Dynamic Systemp. 104
5.6 Concluding Remarksp. 110
Referencesp. 111
6 Passivity and Stability of Fuzzy Control Systemsp. 113
6.1 Introductionp. 113
6.2 Fuzzy Control Systemsp. 114
6.2.1 Mamdani Fuzzy Controllersp. 114
6.2.2 Takagi--Sugeno Fuzzy Control Systemsp. 115
6.3 Stability and Passivity of Fuzzy Controllersp. 117
6.3.1 Basic Conceptsp. 117
6.3.2 Passivity of QPI Controllersp. 122
6.3.3 Passivity of DPS Controllersp. 123
6.3.4 Passivity of Polytopic Differential Inclusionsp. 126
6.4 Stability of Feedback Control with Fuzzy Controllersp. 130
6.4.1 Feedback Control with QPI Mamdani Controllersp. 131
6.4.2 Feedback Control with DPS Mamdani Controllersp. 131
6.4.3 Feedback Control with Linear Takagi--Sugano Controllersp. 133
6.5 Applicationsp. 135
6.5.1 Control of LTI Systems by Fuzzy Controllersp. 136
6.5.2 Fuzzy Control of Euler--Lagrange Systemsp. 137
6.6 Conclusionsp. 138
Acknowledgmentsp. 139
Appendixp. 139
Referencesp. 142
7 Frequency Domain Analysis of MIMO Fuzzy Control Systemsp. 145
7.1 Introductionp. 145
7.2 Multiple Equilibria in MIMO Fuzzy Control Systemsp. 146
7.3 Frequency Analysis of Limit Cyclesp. 148
7.4 Robust Analysis of Limit Cycles using Singular Valuesp. 149
7.5 Conclusionsp. 151
Acknowledgmentsp. 151
Referencesp. 151
8 Analytical Study of Structure of a Mamdani Fuzzy Controller with Three Input Variablesp. 153
8.1 Introductionp. 153
8.2 Configuration of the Fuzzy Controllerp. 154
8.3 Analytical Study of the Fuzzy Controller Structurep. 157
8.4 Conclusionp. 162
Acknowledgmentp. 162
Referencesp. 162
9 An Approach to the Analysis of Robust Stability of Fuzzy Control Systemsp. 165
9.1 Introductionp. 165
9.2 Perspectivep. 166
9.3 The Nominal Fuzzy Control Problemp. 167
9.4 Equilibrium Points for Fuzzy Controlled Processesp. 168
9.5 Fuzzy Robustness Analysisp. 168
9.5.1 Robustness Problem Statementp. 169
9.5.2 Concepts of Sensitivity and Robustnessp. 170
9.5.3 Formulation of Fuzzy System Robustnessp. 171
9.5.4 The Main Resultp. 173
9.5.5 Derivation of the Main Resultp. 173
9.6 Generalization of the Robust Stability Resultp. 174
9.6.1 Virtual Interactions Based on Stabilityp. 175
9.6.2 General Result for Robust Stabilizationp. 177
9.6.3 Minimizing dVp. 177
9.7 Fuzzy Extremes of Perturbationsp. 178
9.7.1 A Measure of Fuzzy Robustnessp. 179
9.7.2 Commentsp. 180
9.8 Application Examplep. 182
9.8.1 Problem Statementp. 185
9.8.2 Simulation Studies and Resultsp. 186
9.8.3 Discussionp. 196
9.9 Conclusionsp. 196
Bibliographyp. 197
10 Fuzzy Control Systems Stability Analysis with Application to Aircraft Systemsp. 203
10.1 Introductionp. 203
10.1.1 Fuzzy Controlp. 204
10.1.2 Lyapunov Stability of Non-linear Fuzzy Control Systemsp. 205
10.1.3 The Fuzzy Control Problemp. 205
10.1.4 Equilibrium Points for Fuzzy Controlled Processesp. 207
10.1.5 The Partitioned State Spacep. 208
10.1.6 Dissipative Mapping and Input-Output Stabilityp. 208
10.1.7 Dissipative Mapping for the Fuzzy Control Systemp. 210
10.1.8 Stability of Linear Fuzzy Control Systemsp. 211
10.1.9 Positive Realness and Dissipativenessp. 212
10.1.10 Verifying Dissipativenessp. 214
10.2 Linear Continuous-Time Model Applicationp. 214
10.2.1 A Missile Autopilotp. 214
10.2.2 Analysisp. 215
10.2.3 Simulation Studies and Resultsp. 219
10.2.4 Conclusionsp. 220
10.3 Linear Discrete-Time Model Applicationp. 221
10.3.1 Advanced Technology Wing Aircraft Modelp. 221
10.3.2 Introductionp. 221
10.3.3 The ATW Problemp. 222
10.3.4 Control Architecturep. 223
10.3.5 Control Rule Synthesisp. 224
10.3.6 Stability Analysisp. 227
10.3.7 Conclusionsp. 232
10.4 Summaryp. 233
Bibliographyp. 233
Synthesisp. 237
11 Observer-Based Controller Synthesis for Model-Based Fuzzy Systems via Linear Matrix Inequalitiesp. 239
11.1 Introductionp. 239
11.2 Takagi-Sugano Modelsp. 240
11.2.1 Continuous-Time T-S Modelsp. 240
11.2.2 Continuous-Time T-S Controllers and Closed-Loop Stabilityp. 241
11.2.3 Discrete-Time T-S Controllersp. 242
11.3 LMI Stability Conditions for T-S Fuzzy Systemsp. 243
11.3.1 The Continuous-Time Casep. 243
11.3.2 The Discrete-Time Casep. 243
11.4 Fuzzy Observersp. 244
11.4.1 Why Output Feedback?p. 244
11.4.2 Continuous-Time T-S Fuzzy Observersp. 244
11.4.3 Separation Property of the Observer/Controllerp. 246
11.4.4 Discrete-Time T-S Fuzzy Observersp. 247
11.5 Numerical Examplep. 249
11.6 Conclusionp. 252
Referencesp. 252
12 LMI-Based Fuzzy Control: Fuzzy Regulator and Fuzzy Observer Design via LMIsp. 253
12.1 Introductionp. 253
12.2 Takagi-Sugano Fuzzy Modelp. 254
12.3 Fuzzy Regulator Design via LMIsp. 255
12.3.1 Parallel Distributed Compensationp. 255
12.3.2 Control Performance Represented by LMIsp. 256
12.4 Fuzzy Observer Designp. 262
12.5 Conclusionsp. 263
Referencesp. 264
13 A framework for the Synthesis of PDC-Type Takagi-Sugano Fuzzy Control Systems: An LMI Approachp. 267
13.1 Introductionp. 267
13.1.1 Brief Historical Overviewp. 267
13.2 Background Materialsp. 268
13.2.1 T-S Fuzzy Model of Non-linear Dynamic Systems and its Stabilityp. 268
13.2.2 PDC-Type T-S Fuzzy Control System and its Stabilityp. 269
13.3 Stability LMIs as a Framework for the Synthesis of PDC-Type T-S Fuzzy Control Systemsp. 271
13.4 Pole Placement Constraint LMIs as Performance Specifications for the Synthesis of PDC-Type T-S Fuzzy Control Systemsp. 274
13.5 An Extension to PDC-Type T-S Fuzzy Control Systems with Parameter Uncertaintiesp. 276
13.6 A Simulated Examplep. 279
13.7 Concluding Remarksp. 281
Referencesp. 282
14 On Adaptive Fuzzy Logic Control on Non-linear Systems--Synthesis and Analysisp. 283
14.1 Introductionp. 283
14.2 Control Objectivep. 284
14.3 DFLS Identifierp. 285
14.4 Control Law of the Systemp. 287
14.5 Adaptive Law for the Parameter Vector Yp. 288
14.6 Adaptive Law for gp. 290
14.7 Stability Properties of the DFLS Control Algorithmp. 291
14.8 Illustrative Applicationp. 292
14.9 Concluding Remarksp. 295
Appendix Proof of Theorem 7.1p. 296
Referencesp. 307
15 Stabilization of Direct Adaptive Fuzzy Control Systems: Two Approachesp. 309
15.1 Introductionp. 309
15.2 Integral Sliding-Mode Adaptive FLC: Approach Ip. 310
15.2.1 Structure of an Integral Sliding-Mode Adaptive FLCp. 310
15.2.2 Stabilization of the Integral Sliding-mode Adaptive FLCp. 311
15.2.3 Properties of the Integral Sliding-Model Adaptive FLCp. 313
15.3 New Fuzzy Logic Based Learning Control: Approach IIp. 314
15.3.1 Structure of the New Fuzzy Logic Based Learning Controlp. 314
15.3.2 Stabilization of the New Fuzzy Logic Based Learning Controlp. 314
15.3.3 Discussion of the New Fuzzy Logic Based Learning Controlp. 316
15.4 Simulationp. 316
15.4.1 Approach Ip. 316
15.4.2 Approach IIp. 317
15.5 Concluding Remarksp. 319
Referencesp. 320
16 Gain Scheduling Based Control of a Class of TSK Systemsp. 321
16.1 Introductionp. 321
16.2 TSK Model as a Gain Scheduled Systemp. 322
16.3 Stability Conditions for TSK Fuzzy Systemsp. 324
16.4 Synthesis of TSK Compensatorsp. 327
16.5 Analytic Form of the Polytopic TSK Compensatorp. 330
16.6 Parameterization of Non-parametric TSK Compensatorsp. 333
16.7 Conclusionp. 334
Referencesp. 334
17 Output Tracking Using Fuzzy Neural Networksp. 335
17.1 Introductionp. 335
17.2 Problem Statement--Assumptionsp. 337
17.3 The Structure of the Controllerp. 339
17.4 The Main Resultsp. 340
17.5 The Learning Algorithmp. 341
17.6 Illustrative Examplesp. 342
17.7 Comprehensive Results and Conclusionsp. 346
Referencesp. 347
18 Fuzzy Life-Extending Control of Mechanical Systemsp. 349
18.1 Introductionp. 349
18.2 Architecture of Life-Extending Control Systemsp. 351
18.3 Life-Extending Control of a Rocket Enginep. 352
18.3.1 Inner Loop Feedback Controller for LECS-1p. 353
18.3.2 Outer Loop Fuzzy Controller for LECS-1p. 355
18.3.3 Results and Discussion for LECS-1p. 359
18.4 Life-Extending Control of a Power Plantp. 362
18.4.1 Inner Loop Feedback and Gain Schedulingp. 364
18.4.2 Fuzzy Controllerp. 367
18.4.3 Results and Discussionp. 372
18.5 Summary and Conclusionsp. 379
18.5.1 Control System Stabilityp. 380
Acknowledgmentsp. 381
Appendix A Brief Description of the Rocket Enginep. 381
Appendix B Brief Description of the Power Plantp. 382
Referencesp. 382
Epiloguep. 385
Indexp. 387