Cover image for Quantum theory of the optical and electronic properties of semiconductors
Title:
Quantum theory of the optical and electronic properties of semiconductors
Personal Author:
Edition:
4th ed.
Publication Information:
River Edge, N.J. : World Scientific, 2004
ISBN:
9789812386090
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010064126 QC611.6.O6 H38 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.


Author Notes

Hartmut Haug joined the Institute of Theoretical Physics of the University of Frankfurt, where he was a full professor from 1975 to 2001 and currently is an emeritus
Stephan W. Koch in the fall of 1993, he joined the Philipps-University of Marburg where he is a full professor of Theoretical Physics


Table of Contents

Prefacep. v
1. Oscillator Modelp. 1
1.1 Optical Susceptibilityp. 2
1.2 Absorption and Refractionp. 6
1.3 Retarded Green's Functionp. 12
2. Atoms in a Classical Light Fieldp. 17
2.1 Atomic Optical Susceptibilityp. 17
2.2 Oscillator Strengthp. 21
2.3 Optical Stark Shiftp. 23
3. Periodic Lattice of Atomsp. 29
3.1 Reciprocal Lattice, Bloch Theoremp. 29
3.2 Tight-Binding Approximationp. 36
3.3 k-p Theoryp. 41
3.4 Degenerate Valence Bandsp. 45
4. Mesoscopic Semiconductor Structuresp. 53
4.1 Envelope Function Approximationp. 54
4.2 Conduction Band Electrons in Quantum Wellsp. 56
4.3 Degenerate Hole Bands in Quantum Wellsp. 60
5. Free Carrier Transitionsp. 65
5.1 Optical Dipole Transitionsp. 65
5.2 Kinetics of Optical Interband Transitionsp. 69
5.2.1 Quasi-D-Dimensional Semiconductorsp. 70
5.2.2 Quantum Confined Semiconductors with Subband Structurep. 72
5.3 Coherent Regime: Optical Bloch Equationsp. 74
5.4 Quasi-Equilibrium Regime: Free Carrier Absorptionp. 78
6. Ideal Quantum Gasesp. 89
6.1 Ideal Fermi Gasp. 90
6.1.1 Ideal Fermi Gas in Three Dimensionsp. 93
6.1.2 Ideal Fermi Gas in Two Dimensionsp. 97
6.2 Ideal Bose Gasp. 97
6.2.1 Ideal Bose Gas in Three Dimensionsp. 99
6.2.2 Ideal Bose Gas in Two Dimensionsp. 101
6.3 Ideal Quantum Gases in D Dimensionsp. 101
7. Interacting Electron Gasp. 107
7.1 The Electron Gas Hamiltonianp. 107
7.2 Three-Dimensional Electron Gasp. 113
7.3 Two-Dimensional Electron Gasp. 119
7.4 Multi-Subband Quantum Wellsp. 122
7.5 Quasi-One-Dimensional Electron Gasp. 123
8. Plasmons and Plasma Screeningp. 129
8.1 Plasmons and Pair Excitationsp. 129
8.2 Plasma Screeningp. 137
8.3 Analysis of the Lindhard Formulap. 140
8.3.1 Three Dimensionsp. 140
8.3.2 Two Dimensionsp. 143
8.3.3 One Dimensionp. 145
8.4 Plasmon-Pole Approximationp. 146
9. Retarded Green's Function for Electronsp. 149
9.1 Definitionsp. 149
9.2 Interacting Electron Gasp. 152
9.3 Screened Hartree-Fock Approximationp. 156
10. Excitonsp. 163
10.1 The Interband Polarizationp. 164
10.2 Wannier Equationp. 169
10.3 Excitonsp. 173
10.3.1 Three- and Two-Dimensional Casesp. 174
10.3.2 Quasi-One-Dimensional Casep. 179
10.4 The Ionization Continuump. 181
10.4.1 Three- and Two-Dimensional Casesp. 181
10.4.2 Quasi-One-Dimensional Casep. 183
10.5 Optical Spectrap. 184
10.5.1 Three- and Two-Dimensional Casesp. 186
10.5.2 Quasi-One-Dimensional Casep. 189
11. Polaritonsp. 193
11.1 Dielectric Theory of Polaritonsp. 193
11.1.1 Polaritons without Spatial Dispersion and Dampingp. 195
11.1.2 Polaritons with Spatial Dispersion and Dampingp. 197
11.2 Hamiltonian Theory of Polaritonsp. 199
11.3 Microcavity Polaritonsp. 206
12. Semiconductor Bloch Equationsp. 211
12.1 Hamiltonian Equationsp. 211
12.2 Multi-Subband Microstructuresp. 219
12.3 Scattering Termsp. 221
12.3.1 Intraband Relaxationp. 226
12.3.2 Dephasing of the Interband Polarizationp. 230
12.3.3 Full Mean-Field Evolution of the Phonon-Assisted Density Matricesp. 231
13. Excitonic Optical Stark Effectp. 235
13.1 Quasi-Stationary Resultsp. 237
13.2 Dynamic Resultsp. 246
13.3 Correlation Effectsp. 255
14. Wave-Mixing Spectroscopyp. 269
14.1 Thin Samplesp. 271
14.2 Semiconductor Photon Echop. 275
15. Optical Properties of a Quasi-Equilibrium Electron-Hole Plasmap. 283
15.1 Numerical Matrix Inversionp. 287
15.2 High-Density Approximationsp. 293
15.3 Effective Pair-Equation Approximationp. 296
15.3.1 Bound Statesp. 299
15.3.2 Continuum Statesp. 300
15.3.3 Optical Spectrap. 300
16. Optical Bistabilityp. 305
16.1 The Light Field Equationp. 306
16.2 The Carrier Equationp. 309
16.3 Bistability in Semiconductor Resonatorsp. 311
16.4 Intrinsic Optical Bistabilityp. 316
17. Semiconductor Laserp. 321
17.1 Material Equationsp. 322
17.2 Field Equationsp. 324
17.3 Quantum Mechanical Langevin Equationsp. 328
17.4 Stochastic Laser Theoryp. 335
17.5 Nonlinear Dynamics with Delayed Feedbackp. 340
18. Electroabsorptionp. 349
18.1 Bulk Semiconductorsp. 349
18.2 Quantum Wellsp. 355
18.3 Exciton Electroabsorptionp. 360
18.3.1 Bulk Semiconductorsp. 360
18.3.2 Quantum Wellsp. 368
19. Magneto-Opticsp. 371
19.1 Single Electron in a Magnetic Fieldp. 372
19.2 Bloch Equations for a Magneto-Plasmap. 375
19.3 Magneto-Luminescence of Quantum Wiresp. 378
20. Quantum Dotsp. 383
20.1 Effective Mass Approximationp. 383
20.2 Single Particle Propertiesp. 386
20.3 Pair Statesp. 388
20.4 Dipole Transitionsp. 392
20.5 Bloch Equationsp. 395
20.6 Optical Spectrap. 396
21. Coulomb Quantum Kineticsp. 401
21.1 General Formulationp. 402
21.2 Second Born Approximationp. 408
21.3 Build-Up of Screeningp. 413
Appendix A Field Quantizationp. 421
A.1 Lagrange Functionalp. 421
A.2 Canonical Momentum and Hamilton Functionp. 426
A.3 Quantization of the Fieldsp. 428
Appendix B Contour-Ordered Green's Functionsp. 435
B.1 Interaction Representationp. 436
B.2 Langreth Theoremp. 439
B.3 Equilibrium Electron-Phonon Self-Energyp. 442
Indexp. 445