Cover image for Semiconductor lasers : stability, instability and chaos
Title:
Semiconductor lasers : stability, instability and chaos
Personal Author:
Series:
Springer series in optical sciences ; 111
Edition:
2nd ed.
Publication Information:
New York, NY : Springer, 2008
Physical Description:
xvii, 476 p. : ill. ; 24 cm.
ISBN:
9783540726470

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010179591 TA1700 O37 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This monograph describes fascinating recent progress in the field of chaos, stability, and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control, and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.


Table of Contents

1 Introductionp. 1
1.1 Chaos and Lasersp. 1
1.2 Historical Perspectives of Chaos in Semiconductor Lasersp. 3
1.3 Outline of This Bookp. 6
2 Chaos in Laser Systemsp. 11
2.1 Laser Model and Bloch Equationsp. 11
2.1.1 Laser Model in a Ring Resonatorp. 11
2.1.2 Light Emission and Absorption in Two-Level Atomsp. 13
2.1.3 Maxwell-Bloch Equationsp. 14
2.2 Lorenz-Haken Equationsp. 15
2.2.1 Lorenz-Haken Equationsp. 15
2.2.2 First Laser Thresholdp. 16
2.2.3 Second Laser Thresholdp. 18
2.3 Classifications of Lasersp. 20
2.3.1 Classes of Lasersp. 20
2.3.2 Class C Lasersp. 20
2.3.3 Class B Lasersp. 23
2.3.4 Class A Lasersp. 24
3 Semiconductor Lasers and Theoryp. 25
3.1 Semiconductor Lasersp. 25
3.2 Oscillation Conditions of Semiconductor Lasersp. 26
3.2.1 Laser Oscillation Conditionsp. 26
3.2.2 Laser Oscillation Frequencyp. 28
3.2.3 Dependence of Oscillation Frequency on Carrier Densityp. 29
3.3 Derivation of Rate Equationsp. 29
3.3.1 Gain at Laser Oscillationp. 29
3.3.2 Rate Equation for the Fieldp. 30
3.3.3 Linewidth Enhancement Factorp. 32
3.3.4 Laser Rate Equationsp. 33
3.4 Linear Stability Analysis and Relaxation Oscillationp. 37
3.4.1 Linear Stability Analysisp. 37
3.4.2 Relaxation Oscillationp. 38
3.5 Langevin Noisesp. 40
3.5.1 Rate Equations Including Langevin Noisesp. 40
3.5.2 Langevin Noisesp. 41
3.5.3 Noise Spectrump. 43
3.5.4 Relative Intensity Noise (RIN)p. 43
3.5.5 Phase Noise and Spectral Linewidthp. 44
3.6 Modulation Characteristicsp. 47
3.6.1 Injection Current Modulationp. 47
3.6.2 Intensity Modulation Characteristicsp. 48
3.6.3 Phase Modulation Characteristicsp. 50
3.7 Waveguide Models of Semiconductor Lasersp. 51
3.7.1 Index- and Gain-Guided Structuresp. 51
3.7.2 Waveguide Modelsp. 53
3.7.3 Spatial Modes of Gain- and Index-Guided Lasersp. 54
3.7.4 Effects of Spontaneous Emission in Gain- and Index-Guided Lasersp. 56
3.7.5 Laser Typesp. 58
4 Theory of Optical Feedback in Semiconductor Lasersp. 63
4.1 Theory of Optical Feedbackp. 63
4.1.1 Optical Feedback Effects and Classifications of Optical Feedback Phenomenap. 63
4.1.2 Theoretical Modelp. 66
4.2 Linear Stability Analysis for Optical Feedback Systemsp. 68
4.2.1 Linear Stability Analysisp. 68
4.2.2 Linear Mode, and Stability and Instability in Semiconductor Lasersp. 73
4.2.3 Gain Reduction Due to Optical Feedbackp. 75
4.2.4 Linewidth in the Presence of Optical Feedbackp. 76
4.3 Feedback from a Grating Mirrorp. 77
4.4 Phase-Conjugate Feedbackp. 79
4.5 Incoherent Feedback and Polarization-Rotated Optical Feedbackp. 82
4.5.1 Incoherent Feedbackp. 82
4.5.2 Polarization-Rotated Optical Feedbackp. 83
4.6 Filtered Feedbackp. 85
5 Dynamics of Semiconductor Lasers with Optical Feedbackp. 87
5.1 Optical Feedback from a Conventional Reflectorp. 87
5.1.1 Optical Feedback Effectsp. 87
5.1.2 Potential Model in Feedback Induced Instabilityp. 88
5.1.3 Optical Spectrum in Stable and Unstable Feedback Regimesp. 90
5.1.4 Chaos in Semiconductor Lasers with Optical Feedbackp. 93
5.1.5 Chaotic Bifurcationsp. 95
5.1.6 Dynamics for Injection Current Variationsp. 96
5.2 Dependence of Chaotic Dynamics on the External Mirror Positionp. 101
5.2.1 Periodic Stability Enhancement for Variations of the External Cavity Lengthp. 101
5.2.2 Origin of Periodic Stability Enhancementp. 103
5.2.3 Effects of Linewidth Enhancement Factorp. 105
5.2.4 Sensitivity of the Optical Phasep. 107
5.2.5 Chaotic Dynamics for a Small Change of the External Cavity Lengthp. 109
5.3 Low-Frequency Fluctuations (LFFs)p. 112
5.3.1 Low-Frequency Fluctuation Phenomenap. 112
5.3.2 LFF Characteristicsp. 115
5.3.3 Origin of LFFsp. 117
5.4 Chaotic Dynamics in Short External Cavity Limitp. 120
5.4.1 Stable and Unstable Conditions in Short External Cavityp. 120
5.4.2 Regular Pulse Package Oscillations in Short External Cavityp. 122
5.4.3 Bifurcations of Regular Pulse Packagep. 124
5.5 Dynamics in Semiconductor Lasers with Grating Mirror Feedbackp. 126
5.6 Dynamics in Semiconductor Lasers with Phase-Conjugate Mirror Feedbackp. 129
5.6.1 Linear Stability Analysisp. 129
5.6.2 Dynamics Induced by Phase-Conjugate Feedbackp. 131
5.6.3 Dynamics in the Presence of Frequency Detuningp. 132
5.6.4 Finite and Slow Response Phase-Conjugate Feedbackp. 132
5.7 Dynamics of Semiconductor Lasers with Incoherent Optical Feedbackp. 134
5.7.1 Dynamics of Incoherent Optical Feedbackp. 134
5.7.2 Dynamics of Polarization-Rotated Optical Feedbackp. 138
5.8 Dynamics of Filtered Optical Feedbackp. 140
5.8.1 Filtered Optical Feedbackp. 140
5.8.2 External Cavity Modesp. 142
5.8.3 Frequency Oscillations and Chaotic Dynamicsp. 144
6 Dynamics in Semiconductor Lasers with Optical Injectionp. 147
6.1 Optical Injectionp. 147
6.1.1 Optical Injection Lockingp. 147
6.1.2 Injection Locking Conditionp. 150
6.2 Stability and Instability in Optical Injection Systemsp. 152
6.2.1 Rate Equationsp. 152
6.2.2 Chaotic Bifurcations by Optical Injectionp. 153
6.2.3 Chaos Map in the Phase Space of Frequency Detuning and Injectionp. 157
6.2.4 Coexistence of Chaotic Attractors in Optically Injected Semiconductor Lasersp. 161
6.3 Enhancement of Modulation Bandwidth and Generation of High Frequency Chaotic Oscillation by Strong Optical Injectionp. 164
6.3.1 Enhancement of Modulation Bandwidth by Strong Optical Injectionp. 164
6.3.2 Origin of Modulation Bandwidth Enhancementp. 168
6.3.3 Modulation Response by Strong Optical Injectionp. 170
6.3.4 Suppression of Frequency Chirping by Strong Optical Injectionp. 172
6.3.5 Generation of High Frequency Chaotic Oscillation by Strong Optical Injectionp. 174
7 Dynamics of Semiconductor Lasers with Optoelectronic Feedback and Modulationp. 177
7.1 Theory of Optoelectronic Feedbackp. 177
7.1.1 Optoelectronic Feedback Systemsp. 177
7.1.2 Pulsation Oscillations in Optoelectronic Feedback Systemsp. 179
7.2 Linear Stability Analysis for Optoelectronic Feedback Systemsp. 182
7.2.1 Linear Stability Analysisp. 182
7.2.2 Characteristics of Semiconductor Lasers with Optoelectronic Feedbackp. 185
7.3 Dynamics and Chaos in Semiconductor Lasers with Optoelectronic Feedbackp. 187
7.3.1 Chaotic Dynamics in Negative Optoelectronic Feedbackp. 187
7.3.2 Chaotic Dynamics in Positive Optoelectronic Feedbackp. 189
7.4 Optoelectronic Feedback with Wavelength Filterp. 193
7.4.1 System of Optoelectronic Feedback with Wavelength Filterp. 193
7.4.2 Dynamics of Optoelectronic Feedback with Wavelength Filterp. 195
7.5 Chaotic Dynamics of Semiconductor Lasers Induced by Injection Current Modulationp. 198
7.5.1 Instabilities of a Modulated Semiconductor Laserp. 198
7.5.2 Linear Stability Analysisp. 200
7.5.3 Chaotic Dynamics in Modulated Semiconductor Lasersp. 204
7.6 Nonlinear Dynamics of Various Combinations of External Perturbationsp. 206
7.6.1 Optically Injected Semiconductor Laser Subject to Optoelectronic Feedbackp. 206
7.6.2 Semiconductor Lasers with Optical Feedback and Modulationp. 209
8 Instability and Chaos in Various Laser Structuresp. 213
8.1 Multimode Lasersp. 213
8.1.1 Multimode Operation of Semiconductor Lasersp. 213
8.1.2 Theoretical Model of Multimode Lasersp. 214
8.1.3 Dynamics of Multimode Semiconductor Lasers with Optical Feedbackp. 217
8.2 Self-Pulsating Lasersp. 220
8.2.1 Theory of Self-Pulsating Lasersp. 220
8.2.2 Instabilities at Solitary Oscillationsp. 223
8.2.3 Instability and Chaos by Optical Feedbackp. 227
8.2.4 Instability and Chaos by Injection Current Modulationp. 230
8.3 Vertical-Cavity Surface-Emitting Lasers (VCSELs)p. 232
8.3.1 Theoretical Model of Vertical-Cavity Surface-Emitting Lasersp. 232
8.3.2 Spin-Flip Modelp. 235
8.3.3 Characteristics of VCSELs in Solitary Oscillationsp. 239
8.3.4 Spatio-Temporal Dynamics in VCSELsp. 242
8.3.5 Feedback Effects in VCSELsp. 245
8.3.6 Short Optical Feedback in VCSELsp. 250
8.3.7 Orthogonal Optical Injection Dynamics in VCSELp. 252
8.4 Broad Area Lasersp. 255
8.4.1 Theoretical Model of Broad Area Lasersp. 255
8.4.2 Dynamics of Broad Area Semiconductor Lasers at Solitary Oscillationsp. 258
8.4.3 Feedback Effects in Broad Area Semiconductor Lasersp. 264
8.5 Laser Arraysp. 266
9 Chaos Control and Applicationsp. 269
9.1 General Methods of Chaos Controlp. 269
9.1.1 OGY Methodp. 269
9.1.2 Continuous Control Methodp. 270
9.1.3 Occasional Proportional Methodp. 271
9.1.4 Sinusoidal Modulation Methodp. 272
9.2 Chaos Control in Semiconductor Lasersp. 273
9.2.1 Continuous Controlp. 273
9.2.2 Occasional Proportional Feedback Controlp. 275
9.2.3 Sinusoidal Modulation Controlp. 276
9.2.4 Optical Controlp. 279
9.3 Controlling Chaos and Noise Suppressionp. 282
9.3.1 Noise Suppression by Sinusoidal Modulationp. 282
9.3.2 Stability and Instability of LFFs by Injection Current Modulationp. 286
9.3.3 Chaos Targetingp. 288
10 Stabilization of Semiconductor Lasersp. 291
10.1 Linewidth Narrowing by Optical Feedbackp. 291
10.1.1 Linewidth Narrowing by Strong Optical Feedbackp. 291
10.1.2 Linewidth Narrowing by Grating Feedbackp. 294
10.1.3 Linewidth Narrowing by Phase-Conjugate Optical Feedbackp. 295
10.1.4 Linewidth Narrowing by Resonant Optical Feedbackp. 299
10.2 Linewidth Narrowing by Optoelectronic Feedbackp. 301
10.3 Stabilization in Lasers with Various Structuresp. 304
10.3.1 Noise Suppression in Self-Pulsation Semiconductor Laserp. 304
10.3.2 Stabilization of VCSELsp. 305
10.3.3 Stabilization of Broad-Area Semiconductor Lasersp. 308
10.3.4 Stabilization of Laser Arraysp. 312
10.4 Controls in Nobel Structure Lasersp. 313
10.4.1 Photonic VCSELsp. 313
10.4.2 Quantum-Dot Broad-Area Semiconductor Lasersp. 315
11 Stability and Bistability in Feedback Interferometers, and Their Applicationsp. 319
11.1 Optical Feedback Interferometersp. 319
11.1.1 Bistability and Multistability in Feedback Interferometersp. 319
11.1.2 Interferometric Measurement in Self-Mixing Semiconductor Lasersp. 323
11.2 Applications in Feedback Interferometerp. 325
11.2.1 Displacement and Vibration Measurementp. 325
11.2.2 Velocity Measurementp. 328
11.2.3 Absolute Position Measurementp. 329
11.2.4 Angle Measurementp. 330
11.2.5 Measurement of Linewidth and Linewidth Enhancement Factorp. 332
11.3 Active Feedback Interferometerp. 334
11.3.1 Stability and Bistability in Active Feedback Interferometerp. 334
11.3.2 Chaos Control in Active Feedback Interferometersp. 338
12 Chaos Synchronization in Semiconductor Lasersp. 341
12.1 Concept of Chaos Synchronizationp. 341
12.1.1 Chaos Synchronizationp. 341
12.1.2 Generalized and Complete Chaos Synchronizationp. 344
12.2 Theory of Chaos Synchronization in Semiconductor Lasers with Optical Feedbackp. 347
12.2.1 Model of Synchronization Systemsp. 347
12.2.2 Rate Equations in Unidirectional Coupling Systemsp. 349
12.2.3 Generalized Chaos Synchronizationp. 350
12.2.4 Complete Chaos Synchronizationp. 351
12.2.5 Mutual Coupling Systemsp. 351
12.3 Chaos Synchronization in Semiconductor Lasers with an Optical Feedback Systemp. 353
12.3.1 Chaos Synchronization - Numerical Examplesp. 353
12.3.2 Chaos Synchronization - Experimental Examplesp. 357
12.3.3 Anticipating Chaos Synchronizationp. 359
12.3.4 Bandwidth Enhanced Chaos Synchronizationp. 360
12.3.5 Incoherent Synchronization Systemsp. 362
12.3.6 Polarization Rotated Chaos Synchronizationp. 364
12.4 Chaos Synchronization in Injected Lasersp. 367
12.4.1 Theory of Chaos Synchronization in Injected Lasersp. 367
12.4.2 Examples of Chaos Synchronization in Injected Lasersp. 369
12.5 Chaos Synchronization in Optoelectronic Feedback Systemsp. 370
12.5.1 Theory of Chaos Synchronization in Optoelectronic Feedback Systemsp. 370
12.5.2 Examples of Chaos Synchronization in Optoelectronic Feedback Systemsp. 372
12.6 Chaos Synchronization in Injection Current Modulated Systemsp. 373
12.7 Chaos Synchronization in Mutually Coupled Lasersp. 374
12.7.1 Chaos Synchronization of Semiconductor Lasers with Mutual Optical Couplingp. 374
12.7.2 Chaos Synchronization of Semiconductor Lasers with Mutual Optoelectronic Couplingp. 375
13 Chaotic Communications in Semiconductor Lasersp. 379
13.1 Message Encryption in a Chaotic Carrier and Its Decryptionp. 379
13.1.1 Chaotic Communicationsp. 379
13.1.2 Chaos Maskingp. 381
13.1.3 Chaos Modulationp. 383
13.1.4 Chaos Shift Keyingp. 383
13.1.5 Chaotic Data Communications in Laser Systemsp. 384
13.2 Cryptographic Applications in Optical Feedback Systemsp. 385
13.2.1 Chaotic Communications in Optical Feedback Systemsp. 385
13.2.2 Chaos Masking in Optical Feedback Systemsp. 388
13.2.3 Chaos Modulation in Optical Feedback Systemsp. 393
13.2.4 Chaos Shift Keying in Optical Feedback Systemsp. 394
13.2.5 Chaotic Communications in Incoherent Optical Feedback Systemsp. 396
13.2.6 Chaos Pass Filtering Effectsp. 396
13.3 Cryptographic Applications in Optical Injection Systemsp. 399
13.4 Cryptographic Applications in Optoelectonic Systemsp. 401
13.5 Performance of Chaotic Communicationsp. 404
13.6 Security of Chaotic Communicationsp. 408
13.7 Chaotic Carrier and Bandwidth of Communicationsp. 410
13.8 Chaos Communications in the Real Worldp. 412
13.8.1 Chaos Masking Video Signal Transmissionsp. 412
13.8.2 Chaotic Signal Transmissions through Public Data Linkp. 414
A Appendix: Chaosp. 419
A.1 Nonlinear Chaotic Systemsp. 420
A.1.1 Discrete Systemsp. 420
A.1.2 Continuous Systemsp. 422
A.1.3 Delay Differential Systemsp. 424
A.2 Analysis and Characteristic Descriptions for Chaotic Datap. 425
A.2.1 Phase Space, Attractor, and Poincare Mapp. 425
A.2.2 Steady State Behaviorsp. 427
A.2.3 Fractal Dimension and Correlation Dimensionp. 430
A.2.4 Lyapunov Exponentp. 431
A.3 Chaos Controlp. 432
A.4 Chaos Synchronizationp. 437
Referencesp. 441
Indexp. 469