Cover image for Spatial cluster modelling
Title:
Spatial cluster modelling
Publication Information:
Boca Raton, Fla. : Chapman & Hall/CRC, 2002
ISBN:
9781584882664

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010029168 QA278 L39 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research.

In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal cluster modelling.

Many figures, some in full color, complement the text, and a single section of references cited makes it easy to locate source material. Leading specialists in the field of cluster modelling authored each chapter, and an introduction by the editors to each chapter provides a cohesion not typically found in contributed works. Spatial Cluster Modelling thus offers a singular opportunity to explore this exciting new field, understand its techniques, and apply them in your own research.


Author Notes

Lawson\, Andrew B.; Denison\, David G.T.


Table of Contents

List of Contributorsp. xi
Prefacep. xiii
1 Spatial Cluster Modelling: An Overviewp. 1
1.1 Introductionp. 1
1.2 Historical Developmentp. 3
1.2.1 Conventional Clusteringp. 6
1.2.2 Spatial Clusteringp. 8
1.3 Notation and Model Developmentp. 12
1.3.1 Nonparametric Approachesp. 13
1.3.2 Point or Object Process Modellingp. 15
1.3.3 Random Effect Modellingp. 16
1.3.4 Partition Modellingp. 18
1.3.5 Spatio-Temporal Process Modellingp. 18
I Point process cluster modellingp. 21
2 Significance in Scale-Space for Clusteringp. 23
2.1 Introductionp. 23
2.2 Overviewp. 24
2.3 New Methodp. 29
2.4 Future Directionsp. 35
3 Statistical Inference for Cox Processesp. 37
3.1 Introductionp. 37
3.2 Poisson Processesp. 39
3.3 Cox Processesp. 41
3.4 Summary Statisticsp. 43
3.5 Parametric Models of Cox Processesp. 45
3.5.1 Neyman-Scott Processes as Cox Processesp. 45
3.5.2 Log Gaussian Cox Processesp. 48
3.5.3 Shot Noise G Cox Processesp. 49
3.6 Estimation for Parametric Models of Cox Processesp. 51
3.7 Predictionp. 54
3.7.1 Conditional Simulation for Neyman-Scott Processesp. 55
3.7.2 Conditional Simulation for LGCPsp. 55
3.7.3 Conditional Simulation for Shot-noise G Cox Processesp. 56
3.8 Discussionp. 58
4 Extrapolating and Interpolating Spatial Patternsp. 61
4.1 Introductionp. 61
4.2 Formulation and Notationp. 62
4.2.1 Germ-grain Modelsp. 63
4.2.2 Problem Statementp. 63
4.2.3 Edge Effects and Sampling Biasp. 64
4.2.4 Extrapolationp. 65
4.3 Spatial Cluster Processesp. 66
4.3.1 Independent Cluster Processesp. 67
4.3.2 Cox Cluster Processesp. 68
4.3.3 Cluster Formation Densitiesp. 69
4.4 Bayesian Cluster Analysisp. 72
4.4.1 Markov Point Processesp. 72
4.4.2 Sampling Bias for Independent Cluster Processesp. 74
4.4.3 Spatial Birth-and-Death Processesp. 75
Example: Redwood Seedlingsp. 76
4.4.4 Parameter Estimationp. 78
Example: Cox-Matern Cluster Processp. 80
4.4.5 Adaptive Coupling from the Pastp. 80
4.4.6 Example: Cox-Matern Cluster Processp. 84
4.5 Summary and Conclusionp. 86
5 Perfect Sampling for Point Process Cluster Modellingp. 87
5.1 Introductionp. 87
5.2 Bayesian Cluster Modelp. 89
5.2.1 Preliminariesp. 89
5.2.2 Model Specificationp. 90
5.3 Sampling from the Posteriorp. 93
5.4 Specialized Examplesp. 95
5.4.1 Neyman-Scott Modelp. 95
5.4.2 Pure Silhouette Modelsp. 98
5.5 Leukemia Incidence in Upstate New Yorkp. 100
5.6 Redwood Seedlings Datap. 106
6 Bayesian Estimation and Segmentation of Spatial Point Processes Using Voronoi Tilingsp. 109
6.1 Introductionp. 109
6.2 Proposed Solution Frameworkp. 110
6.2.1 Formulationp. 110
6.2.2 Voronoi Tilingsp. 111
6.2.3 Markov Chain Monte Carlo Using Dynamic Voronoi Tilingsp. 111
6.3 Intensity Estimationp. 112
6.3.1 Formulationp. 112
6.3.2 MCMC Implementationp. 112
Fixed Number of Tilesp. 113
Variable Number of Tilesp. 114
6.4 Intensity Segmentationp. 115
6.4.1 Formulationp. 115
Fixed Number of Tilesp. 115
Variable Number of Tilesp. 117
6.5 Examplesp. 117
6.5.1 Simulated Examplesp. 117
A Sine Wavep. 117
A Linear Featurep. 118
6.5.2 New Madrid Seismic Regionp. 118
6.6 Discussionp. 119
II Spatial process cluster modellingp. 123
7 Partition Modellingp. 125
7.1 Introductionp. 125
7.2 Partition Modelsp. 126
7.2.1 Partitioning for Spatial Datap. 127
7.2.2 Bayesian Inferencep. 128
7.2.3 Predictive Inferencep. 131
7.2.4 Markov Chain Monte Carlo Simulationp. 132
7.2.5 Partition Model Priorp. 133
7.3 Piazza Road Datasetp. 135
7.4 Spatial Count Datap. 135
7.4.1 The Poisson-Gamma Model for Disease Mappingp. 137
7.4.2 Disease Mapping with Covariatesp. 138
7.4.3 East German Lip Cancer Datasetp. 141
7.5 Discussionp. 144
7.6 Further Readingp. 144
8 Cluster Modelling for Disease Rate Mappingp. 147
8.1 Introductionp. 147
8.2 Statistical Modelp. 148
8.3 Posterior Calculationp. 150
8.4 Example: U.S. Cancer Mortality Atlasp. 153
8.4.1 Breast Cancerp. 154
8.4.2 Cervical Cancerp. 155
8.4.3 Colorectal Cancerp. 155
8.4.4 Lung Cancerp. 159
8.4.5 Stomach Cancerp. 159
8.5 Conclusionsp. 159
9 Analyzing Spatial Data Using Skew-Gaussian Processesp. 163
9.1 Introductionp. 163
9.2 Skew-Gaussian Processesp. 164
9.2.1 The Modelp. 165
9.2.2 Bayesian Analysisp. 166
9.2.3 Computational Strategyp. 167
9.3 Real Data Illustration: Spatial Potential Data Predictionp. 168
9.4 Discussionp. 171
10 Accounting for Absorption Lines in Images Obtained with the Chandra X-ray Observatoryp. 175
10.1 Statistical Challenges of the Chandra X-ray Observatoryp. 175
10.2 Modeling the Imagep. 179
10.2.1 Model-Based Spatial Analysisp. 179
10.2.2 Model-Based Spectral Analysisp. 183
10.3 Absorption Linesp. 184
10.3.1 Scientific Backgroundp. 184
10.3.2 Statistical Modelsp. 185
10.3.3 Model Fittingp. 188
10.3.4 A Simulation-Based Examplep. 190
10.4 Spectral Models with Absorption Linesp. 192
10.4.1 Combining Models and Algorithmsp. 192
10.4.2 An Examplep. 195
10.5 Discussionp. 196
11 Spatial Modelling of Count Data: A Case Study in Modelling Breeding Bird Survey Data on Large Spatial Domainsp. 199
11.1 Introductionp. 199
11.2 The Poisson Random Effects Modelp. 200
11.2.1 Spectral Formulationp. 202
11.2.2 Model Implementation and Predictionp. 204
Selected Full-Conditional Distributionsp. 205
Predictionp. 206
Implementationp. 206
11.3 Resultsp. 206
11.4 Conclusionp. 207
III Spatio-temporal cluster modellingp. 211
12 Modelling Strategies for Spatial-Temporal Datap. 213
12.1 Introductionp. 213
12.2 Modelling Strategyp. 214
12.3 D-D (Drift-Drift) Modelsp. 215
12.4 D-C (Drift-Correlation) Modelsp. 220
12.5 C-C (Correlation-Correlation) Modelsp. 222
12.6 A Unified Analysis on the Circlep. 224
12.7 Discussionp. 225
13 Spatio-Temporal Partition Modelling: An Example from Neurophysiologyp. 227
13.1 Introductionp. 227
13.2 The Neurophysiological Experimentp. 227
13.3 The Linear Inverse Solutionp. 228
13.4 The Mixture Modelp. 229
13.4.1 Initial Preparation of the Datap. 229
13.4.2 Formulation of the Mixture Modelp. 230
13.5 Classification of the Inverse Solutionp. 232
13.6 Discussionp. 234
14 Spatio-Temporal Cluster Modelling of Small Area Health Datap. 235
14.1 Introductionp. 235
14.2 Basic Cluster Modelling approachesp. 235
14.2.1 Case Event Data Modelsp. 236
Inter-Event versus Hidden Process Modellingp. 236
14.2.2 Small Area Count Data Modelsp. 239
14.2.3 Spatio-Temporal Extensions to Cluster Modelsp. 239
14.3 A Spatio-Temporal Hidden Process Modelp. 240
14.4 Model Developmentp. 240
14.4.1 Estimation of g(s,t)p. 243
The Prior Distribution for Cluster Centresp. 244
Choice of Cluster Distribution Functionp. 245
Other Prior Distributions and the Posterior Distributionp. 245
14.4.2 Region Countsp. 246
Integrated Intensityp. 247
14.5 The Posterior Sampling Algorithmp. 248
14.5.1 Goodness-of-Fit Measures for the Modelp. 249
14.6 Data Example: Scottish Birth Abnormalitiesp. 249
14.6.1 Introductionp. 249
14.6.2 Exploratory Analysisp. 250
14.6.3 Model Fitting Resultsp. 252
14.7 Discussionp. 256
Referencesp. 259
Indexp. 277
Author Indexp. 281