Cover image for Shape analysis and classification : theory and practice
Title:
Shape analysis and classification : theory and practice
Personal Author:
Series:
Image processing series
Publication Information:
Boca Raton, FL : CRC Press, 2001
ISBN:
9780849334931

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004736363 TA1637 C67 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

Advances in shape analysis impact a wide range of disciplines, from mathematics and engineering to medicine, archeology, and art. Anyone just entering the field, however, may find the few existing books on shape analysis too specific or advanced, and for students interested in the specific problem of shape recognition and characterization, traditional books on computer vision are too general.

Shape Analysis and Classification: Theory and Practice offers an integrated and conceptual introduction to this dynamic field and its myriad applications. Beginning with the basic mathematical concepts, it deals with shape analysis, from image capture to pattern classification, and presents many of the most advanced and powerful techniques used in practice. The authors explore the relevant aspects of both shape characterization and recognition, and give special attention to practical issues, such as guidelines for implementation, validation, and assessment.

Shape Analysis and Classification provides a rich resource for the computational characterization and classification of general shapes, from characters to biological entities. Both students and researchers can directly use its state-of-the-art concepts and techniques to solve their own problems involving the characterization and classification of visual shapes.


Table of Contents

1 Introductionp. 1
1.1 Introduction to Shape Analysisp. 1
1.2 Case Studiesp. 5
1.2.1 Case Study: Morphology of Plant Leavesp. 5
1.2.2 Case Study: Morphometric Classification of Ganglion Cellsp. 7
1.3 Computational Shape Analysisp. 9
1.3.1 Shape Pre-Processingp. 9
1.3.2 Shape Transformationsp. 14
1.3.3 Shape Classificationp. 21
1.4 Organization of the Bookp. 24
2 Basic Mathematical Conceptsp. 27
2.1 Basic Conceptsp. 27
2.1.1 Propositional Logicp. 28
2.1.2 Functionsp. 29
2.1.3 Free Variable Transformationsp. 31
2.1.4 Some Special Real Functionsp. 33
2.1.5 Complex Functionsp. 44
2.2 Linear Algebrap. 51
2.2.1 Scalars, Vectors and Matricesp. 52
2.2.2 Vector Spacesp. 56
2.2.3 Linear Transformationsp. 62
2.2.4 Metric Spaces, Inner Products and Orthogonalityp. 65
2.2.5 More about Vectors and Matricesp. 70
2.3 Differential Geometryp. 90
2.3.1 2D Parametric Curvesp. 90
2.3.2 Arc Length, Speed and Tangent Fieldsp. 94
2.3.3 Normal Fields and Curvaturep. 97
2.4 Multivariate Calculusp. 101
2.4.1 Multivariate Functionsp. 101
2.4.2 Directional, Partial and Total Derivativesp. 107
2.4.3 Differential Operatorsp. 109
2.5 Convolution and Correlationp. 110
2.5.1 Continuous Convolution and Correlationp. 111
2.5.2 Discrete Convolution and Correlationp. 117
2.5.3 Nonlinear Correlation as a Coincidence Operatorp. 120
2.6 Probability and Statisticsp. 122
2.6.1 Events and Probabilityp. 122
2.6.2 Random Variables and Probability Distributionsp. 125
2.6.3 Random Vectors and Joint Distributionsp. 131
2.6.4 Estimationp. 135
2.6.5 Stochastic Processes and Autocorrelationp. 144
2.6.6 The Karhunen-Loeve Transformp. 146
2.7 Fourier Analysisp. 149
2.7.1 Brief Historical Remarksp. 150
2.7.2 The Fourier Seriesp. 151
2.7.3 The Continuous One-Dimensional Fourier Transformp. 157
2.7.4 Frequency Filteringp. 170
2.7.5 The Discrete One-Dimensional Fourier Transformp. 176
2.7.6 Matrix Formulation of the DFTp. 180
2.7.7 Applying the DFTp. 184
2.7.8 The Fast Fourier Transformp. 194
2.7.9 Discrete Convolution Performed in the Frequency Domainp. 195
3 Shape Acquisition and Processingp. 197
3.1 Image Representationp. 198
3.1.1 Image Formation and Gray Level Imagesp. 198
3.1.2 Case Study: Image Samplingp. 201
3.1.3 Binary Imagesp. 203
3.1.4 Shape Samplingp. 206
3.1.5 Some Useful Concepts from Discrete Geometryp. 208
3.1.6 Color Digital Imagesp. 210
3.1.7 Video Sequencesp. 213
3.1.8 Multispectral Imagesp. 215
3.1.9 Voxelsp. 216
3.2 Image Processing and Filteringp. 216
3.2.1 Histograms and Pixel Manipulationp. 218
3.2.2 Local or Neighborhood Processingp. 223
3.2.3 Average Filteringp. 224
3.2.4 Gaussian Smoothingp. 226
3.2.5 Fourier-Based Filteringp. 228
3.2.6 Median and Other Nonlinear Filtersp. 234
3.3 Image Segmentation: Edge Detectionp. 235
3.3.1 Edge Detection in Binary Imagesp. 237
3.3.2 Gray-Level Edge Detectionp. 237
3.3.3 Gradient-Based Edge Detectionp. 239
3.3.4 Roberts Operatorp. 240
3.3.5 Sobel, Prewitt and Kirsch Operatorsp. 242
3.3.6 Fourier-Based Edge Detectionp. 243
3.3.7 Second-Order Operators: Laplacianp. 244
3.3.8 Multiscale Edge Detection: The Marr-Hildreth Transformp. 245
3.4 Image Segmentation: Additional Algorithmsp. 248
3.4.1 Image Thresholdingp. 248
3.4.2 Region-Growingp. 251
3.5 Binary Mathematical Morphologyp. 255
3.5.1 Image Dilationp. 255
3.5.2 Image Erosionp. 259
3.6 Further Image Processing Referencesp. 262
4 Shape Conceptsp. 265
4.1 Introduction to Two-Dimensional Shapesp. 265
4.2 Continuous Two-Dimensional Shapesp. 267
4.2.1 Continuous Shapes and their Typesp. 268
4.3 Planar Shape Transformationsp. 273
4.4 Characterizing 2D Shapes In Terms of Featuresp. 275
4.5 Classifying 2D Shapesp. 280
4.6 Representing 2D Shapesp. 281
4.6.1 General Shape Representationsp. 283
4.6.2 Landmark Representationsp. 286
4.7 Shape Operationsp. 289
4.8 Shape Metricsp. 290
4.8.1 The 2n Euclidean Normp. 291
4.8.2 The Mean Sizep. 295
4.8.3 Alternative Shape Sizesp. 295
4.8.4 Which Size?p. 296
4.8.5 Distances between Shapesp. 298
4.9 Morphic Transformationsp. 301
4.9.1 Affine Transformationsp. 308
4.9.2 Euclidean Motionsp. 314
4.9.3 Rigid Body Transformationsp. 315
4.9.4 Similarity Transformationsp. 315
4.9.5 Other Transformations and Some Important Remarksp. 316
4.9.6 Thin-Plate Splinesp. 317
5 Two-Dimensional Shape Representationp. 331
5.1 Introductionp. 331
5.2 Parametric Contourp. 335
5.2.1 Contour Extractionp. 335
5.2.2 A Contour Following Algorithmp. 341
5.2.3 Contour Representation by Vectors and Complex Signalsp. 348
5.2.4 Contour Representation Based on the Chain Codep. 350
5.3 Sets of Contour Pointsp. 351
5.4 Curve Approximationsp. 352
5.4.1 Polygonal Approximationp. 352
5.4.2 Ramer Algorithm for Polygonal Approximationp. 354
5.4.3 Split-and-Merge Algorithm for Polygonal Approximationp. 360
5.5 Digital Straight Linesp. 365
5.5.1 Straight Lines and Segmentsp. 366
5.5.2 Generating Digital Straight Lines and Segmentsp. 367
5.5.3 Recognizing an Isolated Digital Straight Segmentp. 374
5.6 Hough Transformsp. 376
5.6.1 Continuous Hough Transformsp. 376
5.6.2 Discrete Image and Continuous Parameter Spacep. 378
5.6.3 Discrete Image and Parameter Spacep. 382
5.6.4 Backmappingp. 389
5.6.5 Problems with the Hough Transformp. 391
5.6.6 Improving the Hough Transformp. 393
5.6.7 General Remarks on the Hough Transformp. 400
5.7 Exact Dilationsp. 400
5.8 Distance Transformsp. 405
5.9 Exact Distance Transform Through Exact Dilationsp. 407
5.10 Voronoi Tessellationsp. 408
5.11 Scale-Space Skeletonizationp. 412
5.12 Bounding Regionsp. 419
6 Shape Characterizationp. 421
6.1 Statistics for Shape Descriptorsp. 421
6.2 Some General Descriptorsp. 422
6.2.1 Perimeterp. 423
6.2.2 Areap. 424
6.2.3 Centroid (Center of Mass)p. 425
6.2.4 Maximum and Minimum Distance to Centroidp. 426
6.2.5 Mean Distance to the Boundaryp. 427
6.2.6 Diameterp. 427
6.2.7 Norm Featuresp. 429
6.2.8 Maximum Arc Lengthp. 429
6.2.9 Major and Minor Axesp. 429
6.2.10 Thicknessp. 432
6.2.11 Hole-Based Shape Featuresp. 432
6.2.12 Statistical Momentsp. 433
6.2.13 Symmetryp. 434
6.2.14 Shape Signaturesp. 435
6.2.15 Topological Descriptorsp. 438
6.2.16 Polygonal Approximation-Based Shape Descriptorsp. 438
6.2.17 Shape Descriptors based on Regions and Graphsp. 439
6.2.18 Simple Complexity Descriptorsp. 439
6.3 Fractal Geometry and Complexity Descriptorsp. 442
6.3.1 Preliminary Considerations and Definitionsp. 442
6.3.2 The Box-Counting Approachp. 443
6.3.3 Case Study: The Classical Koch Curvep. 443
6.3.4 Implementing the Box-Counting Methodp. 445
6.3.5 The Minkowsky Sausage or Dilation Methodp. 447
6.4 Curvaturep. 449
6.4.1 Biological Motivationp. 449
6.4.2 Simple Approaches to Curvaturep. 451
6.4.3 c-Measurep. 456
6.4.4 Curvature-Based Shape Descriptorsp. 457
6.5 Fourier Descriptorsp. 459
6.5.1 Some Useful Propertiesp. 461
6.5.2 Alternative Fourier Descriptorsp. 464
7 Multiscale Shape Characterizationp. 467
7.1 Multiscale Transformsp. 467
7.1.1 Scale-Spacep. 468
7.1.2 Time-Frequency Transformsp. 471
7.1.3 Gabor Filtersp. 472
7.1.4 Time-Scale Transforms or Waveletsp. 473
7.1.5 Interpreting the Transformsp. 476
7.1.6 Analyzing Multiscale Transformsp. 480
7.2 Fourier-Based Multiscale Curvaturep. 484
7.2.1 Fourier-Based Curvature Estimationp. 484
7.2.2 Numerical Differentiation Using the Fourier Propertyp. 487
7.2.3 Gaussian Filtering and the Multiscale Approachp. 490
7.2.4 Some Simple Solutions for the Shrinking Problemp. 491
7.2.5 The Curvegramp. 494
7.2.6 Curvature-Scale Spacep. 500
7.3 Wavelet-Based Multiscale Contour Analysisp. 502
7.3.1 Preliminary Considerationsp. 502
7.3.2 The w-Representationp. 504
7.3.3 Choosing the Analyzing Waveletp. 506
7.3.4 Shape Analysis from the w-Representationp. 508
7.3.5 Dominant Point Detection Using the w-Representationp. 509
7.3.6 Local Frequencies and Natural Scalesp. 515
7.3.7 Contour Analysis using the Gabor Transformp. 518
7.3.8 Comparing and Integrating Multiscale Representationsp. 520
7.4 Multiscale Energiesp. 524
7.4.1 The Multiscale Bending Energyp. 524
7.4.2 Bending Energy-Based Neuromorphometryp. 527
7.4.3 The Multiscale Wavelet Energyp. 530
8 Shape Recognition and Classificationp. 533
8.1 Introduction to Shape Classificationp. 533
8.1.1 The Importance of Classificationp. 534
8.1.2 Some Basic Concepts in Classificationp. 536
8.1.3 A Simple Case Study in Classificationp. 538
8.1.4 Some Additional Concepts in Classificationp. 545
8.1.5 Feature Extractionp. 550
8.1.6 Feature Normalizationp. 556
8.2 Supervised Pattern Classificationp. 565
8.2.1 Bayes Decision Theory Principlesp. 565
8.2.2 Bayesian Classification: Multiple Classes and Dimensionsp. 571
8.2.3 Bayesian Classification of Leavesp. 574
8.2.4 Nearest Neighborsp. 574
8.3 Unsupervised Classification and Clusteringp. 577
8.3.1 Basic Concepts and Issuesp. 577
8.3.2 Scatter Matrices and Dispersion Measuresp. 580
8.3.3 Partitional Clusteringp. 583
8.3.4 Hierarchical Clusteringp. 589
8.4 A Case Study: Leaves Classificationp. 600
8.4.1 Choice of Methodp. 602
8.4.2 Choice of Metricsp. 603
8.4.3 Choice of Featuresp. 604
8.4.4 Validation Considering the Cophenetic Correlation Coefficientp. 607
8.5 Evaluating Classification Methodsp. 608
8.5.1 Case Study: Classification of Ganglion Cellsp. 609
8.5.2 The Feature Spacep. 610
8.5.3 Feature Selection and Dimensionality Reductionp. 612
9 Epilogue - Future Trends in Shape Analysis and Classificationp. 617
Bibliographyp. 621
Indexp. 649