Cover image for Microwave filters for communication systems : fundamentals, design, and applications
Title:
Microwave filters for communication systems : fundamentals, design, and applications
Personal Author:
Publication Information:
Hoboken, NJ : Wiley-Interscience, 2007
ISBN:
9780471450221

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010139731 TK7872.F5 C35 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

There have been significant advances in the synthesis and physical realization of microwave filter networks over the last three decades. This book provides a coherent and readable description of system requirements and constraints for microwave filters, fundamental considerations in the theory and design of microwave filters, up-to-date modern synthesis techniques with examples and technology considerations in the choice of hardware.


Author Notes

Richard J. Cameron is the retired technical director of COM DEV Europe, Visiting Professor at the University of Leeds (UK), and is a Fellow of IEE and IEEE
Dr. Chandra M. Kudsia is Adjunct Professor at the University of Waterloo, a Fellow of IEEE, AIAA and EIC, and the retired chief scientist of COM DEV Space Group
Dr. Raafat R. Mansour is a Professor at the University of Waterloo, former director of R&D at COM DEV International, and is a Fellow of IEEE


Table of Contents

Forewordp. xxi
Prefacep. xxiii
Acknowledgmentsp. xxxi
1 Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspectivep. 1
Part I Introduction to a Communication System, Radio Spectrum, and Informationp. 2
1.1 Model of a Communication Systemp. 2
1.1.1 Building Blocks of a Communication Systemp. 3
1.2 Radio Spectrum and its Utilizationp. 7
1.2.1 Radio Propagation at Microwave Frequenciesp. 7
1.2.2 Radio Spectrum as a Natural Resourcep. 9
1.3 Concept of Informationp. 10
1.4 Communication Channel and Link Budgetsp. 12
1.4.1 Signal Power in a Communication Linkp. 12
1.4.2 Transmit and Receive Antennasp. 13
Part II Noise in a Communication Channelp. 18
1.5 Noise in Communication Systemsp. 18
1.5.1 Adjacent Copolarized Channel Interferencep. 18
1.5.2 Adjacent Cross-Polarized Channel Interferencep. 19
1.5.3 Multipath Interferencep. 19
1.5.4 Thermal Noisep. 20
1.5.5 Noise in Cascaded Networksp. 26
1.5.6 Intermodulation (IM) Noisep. 29
1.5.7 Distortion Due to Channel Imperfectionsp. 31
1.5.8 RF Link Designp. 34
1.6 Modulation-Demodulation Schemes in a Communication Systemp. 37
1.6.1 Amplitude Modulationp. 37
1.6.2 Formation of a Baseband Signalp. 39
1.6.3 Angle-Modulated Signalsp. 40
1.6.4 Comparison of FM and AM Systemsp. 43
1.7 Digital Transmissionp. 46
1.7.1 Samplingp. 46
1.7.2 Quantizationp. 47
1.7.3 PCM Systemsp. 47
1.7.4 Quantization Noise in PCM Systemsp. 48
1.7.5 Error Rates in Binary Transmissionp. 49
1.7.6 Digital Modulation and Demodulation Schemesp. 50
1.7.7 Advanced Modulation Schemesp. 53
1.7.8 Quality of Service and S/N Ratiop. 58
Part III Impact of System Design on the Requirements of Filter Networksp. 58
1.8 Communication Channes in a Satellite Systemp. 58
1.8.1 Receive Sectionp. 61
1.8.2 The Channelizer Sectionp. 62
1.8.3 High-Power Amplifiers (HPAs)p. 64
1.8.4 Transmitter Section Architecturep. 67
1.9 RF Filters in Cellular Systemsp. 71
1.10 Impact of System Requirements on RF Filter Specificationsp. 74
1.11 Impact of Satellite and Cellular Communications on Filter Technologyp. 77
Summaryp. 78
Referencesp. 78
Appendix 1A Intermodulation Distortion Summaryp. 80
2 Fundamentals of Circuit Theory Approximationp. 83
2.1 Linear Systemsp. 83
2.1.1 Concept of Linearityp. 84
2.2 Classification of Systemsp. 84
2.2.1 Time-Invariant and Time-Variant Systemsp. 85
2.2.2 Lumped and Distributed Systemsp. 85
2.2.3 Instantaneous and Dynamic Systemsp. 85
2.2.4 Analog and Digital Systemsp. 85
2.3 Evolution of Electrical Circuits-A Historical Perspectivep. 86
2.3.1 Circuit Elementsp. 86
2.4 Network Equation of Linear Systems in the Time Domainp. 87
2.5 Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Functionp. 89
2.5.1 Complex Frequency Variablep. 90
2.5.2 Transfer Functionp. 91
2.5.3 Signal Representation by Continuous Exponentialsp. 92
2.5.4 Transfer Functions of Electrical Networksp. 92
2.6 Steady-State Response of Linear Systems to Sinusoidal Excitationsp. 93
2.7 Circuit Theory Approximationp. 94
Summaryp. 96
Referencesp. 96
3 Characterization of Lossless Lowpass Prototype Filter Functionsp. 97
3.1 The Ideal Filterp. 97
3.1.1 Distortionless Transmissionp. 97
3.1.2 Maximum Power Transfer in Two-Port Networksp. 98
3.2 Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networksp. 99
3.2.1 Reflection and Transmission Coefficientsp. 101
3.2.2 Normalization of the Characteristic Polynomialsp. 104
3.3 Characteristic Polynomials for Idealized Lowpass Prototype Networksp. 105
3.4 Lowpass Prototype Characteristicsp. 107
3.4.1 Amplitude Responsep. 107
3.4.2 Phase Responsep. 107
3.4.3 Phase Linearityp. 108
3.5 Characteristic Polynomials Versus Response Shapesp. 109
3.5.1 All-Pole Prototype Filter Functionsp. 109
3.5.2 Prototype Filter Functions with Finite Transmission Zerosp. 109
3.6 Classical Prototype Filtersp. 111
3.6.1 Maximally Flat Filtersp. 111
3.6.2 Chebyshev Approximationp. 112
3.6.3 Elliptic Function Filtersp. 115
3.6.4 Odd-Order Elliptic Function Filtersp. 118
3.6.5 Even-Order Elliptic Function Filtersp. 119
3.6.6 Filters with Transmission Zeros and a Maximally Flat Passbandp. 121
3.6.7 Lineal-Phase Filtersp. 121
3.6.8 Comparison of Maximally Flat, Chebyshev, and Elliptic Function Filtersp. 122
3.7 Unified Design Chart (UDC) Relationshipsp. 123
3.7.1 Ripple Factorp. 124
3.8 Lowpass Prototype Circuit Configurationsp. 125
3.8.1 Scaling of Prototype Networksp. 126
3.8.2 Frequency Response of Scaled Networksp. 127
3.9 Effect of Dissipationp. 130
3.9.1 Relationship of Dissipation Factor [delta] and Quality Factor Q[subscript 0]p. 132
3.9.2 Equivalent [delta] for Lowpass and Highpass Filtersp. 134
3.9.3 Equivalent [delta] for Bandpass and Bandstop Filtersp. 134
3.10 Asymmetric Response Filtersp. 136
3.10.1 Positive Functionsp. 137
Summaryp. 140
Referencesp. 141
Appendix 3A Unified Design Chartsp. 143
4 Computer-Aided Synthesis of Characteristic Polynomialsp. 151
4.1 Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networksp. 152
4.2 Analytic Gradients of the Objective Functionp. 154
4.2.1 Gradient of the Unconstrained Objective Functionp. 155
4.2.2 Gradient of the Inequality Constraintp. 156
4.2.3 Gradient of the Equality Constraintp. 157
4.3 Optimization Criteria for Classical Filtersp. 158
4.3.1 Chebyshev Function Filtersp. 158
4.3.2 Inverse Chebyshev Filtersp. 159
4.3.3 Elliptic Function Filtersp. 159
4.4 Generation of Novel Classes of Filter Functionsp. 161
4.4.1 Equiripple Passbands and Stopbandsp. 161
4.4.2 Nonequiripple Stopband with an Equiripple Passbandp. 163
4.5 Asymmetric Class of Filtersp. 163
4.5.1 Asymmetric Filters with Chebyshev Passbandp. 164
4.5.2 Asymmetrical Filters with Arbitrary Responsep. 166
4.6 Linear Phase Filtersp. 168
4.7 Critical Frequencies for Selected Fitter Functionsp. 169
Summaryp. 169
Referencesp. 170
Appendix 4A Critical Frequencies for an Unconventional 8-Pole Filterp. 171
5 Analysis of Multiport Microwave Networksp. 173
5.1 Matrix Representation of Two-Port Networksp. 174
5.1.1 Impedance [Z] and Admittance [Y] Matricesp. 174
5.1.2 The [ABCD] Matrixp. 175
5.1.3 The Scattering [S] Matrixp. 178
5.1.4 The Transmission Matrix [T]p. 183
5.1.5 Analysis of Two-Port Networksp. 185
5.2 Cascade of Two Networksp. 189
5.3 Multiport Networksp. 198
5.4 Analysis of Multiport Networksp. 200
Summaryp. 205
Referencesp. 206
6 Synthesis of a General Class of the Chebyshev Filter Functionp. 207
6.1 Polynomial forms of the Transfer and Reflection Parameters S[subscript 21](s) and S[subscript 11](s) for a Two-Port Networkp. 207
6.1.1 Relationships Between [epsilon] and [epsilon subscript R]p. 215
6.2 Alternating Pole Method for Determination of the Denominator Polynomial E(s)p. 216
6.3 General Polynomial Synthesis Methods for Chebyshev Filter Functionsp. 219
6.3.1 Polynomial Synthesisp. 220
6.3.2 Recursive Techniquep. 225
6.3.3 Polynomial Forms for Symmetric and Asymmetric Filtering Functionsp. 229
6.4 Predistorted Filter Characteristicsp. 230
6.4.1 Synthesis of the Predistorted Filter Networkp. 236
6.5 Transformation for Dual-Band Bandpass Filtersp. 238
Summaryp. 241
Referencesp. 242
7 Synthesis of Network-Circuit Approachp. 243
7.1 Circuit Synthesis Approachp. 245
7.1.1 Buildup of [ABCD] Matrix for the Third-Degree Networkp. 246
7.1.2 Network Synthesisp. 247
7.2 Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass Filtersp. 250
7.2.1 Synthesis of the [ABCD] Polynomials for Circuits with Invertersp. 251
7.2.2 Synthesis of the [ABCD] Polynomials for the Singly Terminated Filter Prototypep. 258
7.3 Ladder Network Synthesisp. 260
7.4 Synthesis Example of an Asymmetric (4-2) Filter Networkp. 269
Summaryp. 276
Referencesp. 277
8 Coupling Matrix Synthesis of Filter Networksp. 279
8.1 Coupling Matrixp. 279
8.1.1 Bandpass and Lowpass Prototypesp. 281
8.1.2 Formation of the General N x N Coupling Matrix and its Analysisp. 282
8.1.3 Formation of the Coupling Matrix from the Lowpass Prototype Circuit Elementsp. 286
8.1.4 Analysis of the Network Represented by the Coupling Matrixp. 288
8.1.5 Direct Analysisp. 291
8.2 Direct Synthesis of the Coupling Matrixp. 292
8.2.1 Direct Synthesis of the N x N Coupling Matrixp. 293
8.3 Coupling Matrix Reductionp. 295
8.3.1 Similarity Transformation and Annihilation f Matrix Elementsp. 296
8.4 Synthesis of the N + 2 Coupling Matrixp. 303
8.4.1 Synthesis of the Transversal Coupling Matrixp. 304
8.4.2 Reduction of the N + 2 Transversal Matrix to the Folded Canonical Formp. 311
8.4.3 Illustrative Examplep. 312
Summaryp. 315
Referencesp. 316
9 Reconfiguration of the Folded Coupling Matrixp. 319
9.1 Symmetric Realizations for Dual-Mode Filtersp. 320
9.1.1 Sixth-Degree Filterp. 322
9.1.2 Eighth-Degree Filterp. 322
9.1.3 10th-Degree Filterp. 323
9.1.4 12th-Degree Filterp. 323
9.2 Asymmetric Realizations for Symmetric Characteristicsp. 325
9.3 "Pfitzenmaier" Configurationsp. 326
9.4 Cascaded Quartets (CQs)-Two Quartets in Cascade for Degrees 8 and Abovep. 328
9.5 Parallel-Connected Two-Port Networksp. 331
9.5.1 Even-Mode and Odd-Mode Coupling Submatricesp. 335
9.6 Cul-de-Sac Configurationp. 337
9.6.1 Further Cul-de-Sac Formsp. 340
9.6.2 Sensitivity Considerationsp. 345
Summaryp. 345
Referencesp. 347
10 Synthesis and Application of Extracted Pole and Trisection Elementsp. 349
10.1 Extracted Pole Filter Synthesisp. 349
10.1.1 Synthesis of the Extracted Pole Elementp. 350
10.1.2 Example of Synthesis of Extracted Pole Networkp. 354
10.1.3 Analysis of the Extracted Pole Filter Networkp. 357
10.1.4 Direct-Coupled Extracted Pole Filtersp. 360
10.2 Synthesis of Bandstop Filters Using the Extracted Pole Techniquep. 364
10.2.1 Direct-Coupled Bandstop Filtersp. 366
10.3 Trisectionsp. 371
10.3.1 Synthesis of the Trisection-Circuit Approachp. 373
10.3.2 Cascade Trisections-Coupling Matrix Approachp. 379
10.3.3 Techniques Based on the Trisection for Synthesis of Advanced Circuitsp. 387
10.4 Box Section and Extended Box Configurationsp. 392
10.4.1 Box Sectionsp. 393
10.4.2 Extended Box Sectionsp. 397
Summaryp. 401
Referencesp. 402
11 Microwave Resonatorsp. 405
11.1 Microwave Resonator Configurationsp. 405
11.2 Calculation of Resonant Frequencyp. 409
11.2.1 Resonance Frequency of Conventional Transmission-Line Resonatorsp. 409
11.2.2 Resonance Frequency Calculation Using the Transverse Resonance Techniquep. 412
11.2.3 Resonance Frequency of Arbitrarily Shaped Resonatorsp. 413
11.3 Resonator Unloaded Q Factorp. 416
11.3.1 Unloaded Q Factor of Conventional Resonatorsp. 418
11.3.2 Unloaded Q of Arbitrarily Shaped Resonatorsp. 421
11.4 Measurement of Loaded and Unloaded Q Factorp. 421
Summaryp. 428
Referencesp. 429
12 Waveguide and Coaxial Lowpass Filtersp. 431
12.1 Commensurate-Line Building Elementsp. 432
12.2 Lowpass Prototype Transfer Polynomialsp. 433
12.2.1 Chebyshev Polynomials of the Second Kindp. 433
12.2.2 Achieser-Zolotarev Functionsp. 436
12.3 Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filterp. 438
12.3.1 Mapping the Transfer Function S[subscript 21] from the [omega] Plane to the [theta] Planep. 439
12.3.2 Synthesis of the Stepped Impedance Lowpass Prototype Circuitp. 441
12.3.3 Realizationp. 443
12.4 Short-Step Transformersp. 448
12.5 Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filterp. 451
12.5.1 Formation of the Transfer and Reflection Polynomialsp. 452
12.5.2 Synthesis of the Tapered-Corrugated Lowpass Prototype Circuitp. 454
12.5.3 Realizationp. 458
Summaryp. 466
Referencesp. 466
13 Waveguide Realization of Single- and Dual-Mode Resonator Filtersp. 469
13.1 Synthesis Processp. 470
13.2 Design of the Filter Functionp. 471
13.2.1 Amplitude Optimizationp. 471
13.2.2 Rejection Lobe Optimizationp. 472
13.2.3 Group Delay Optimizationp. 474
13.3 Realization and Analysis of the Microwave Filter Networkp. 479
13.4 Dual-Mode Filtersp. 485
13.4.1 Virtual Negative Couplingsp. 486
13.5 Coupling Sign Correctionp. 488
13.6 Dual-Mode Realizations for Some Typical Coupling Matrix Configurationsp. 489
13.6.1 Folded Arrayp. 490
13.6.2 Pfitzenmaier Configurationp. 491
13.6.3 Propagating Formsp. 492
13.6.4 Cascade Quartetp. 492
13.6.5 Extended Boxp. 492
13.7 Phase- and Direct-Coupled Extracted Pole Filtersp. 494
13.8 The "Full Inductive" Dual-Mode Filterp. 496
13.8.1 Synthesis of the Equivalent Circuitp. 498
Summaryp. 499
Referencesp. 500
14 Design and Physical Realization of Coupled Resonator Filtersp. 501
14.1 Circuit Models for Chebyshev Bandpass Filtersp. 502
14.2 Calculation of Interresonator Couplingp. 507
14.2.1 The Use of Electric Wall and Magnetic Wall Symmetryp. 507
14.2.2 Interresonator Coupling Calculation Using S Parametersp. 509
14.3 Calculation of Input/Output Couplingp. 511
14.3.1 Frequency Domain Methodp. 511
14.3.2 Group Delay Methodp. 512
14.4 Design Example of Dielectric Resonator Filters Using the Coupling Matrix Modelp. 513
14.4.1 Calculation of Dielectric Resonator Cavity Configurationp. 515
14.4.2 Calculation of Iris Dimensions for Interresonator Couplingp. 516
14.4.3 Calculation of Input/Output Couplingp. 518
14.5 Design Example of a Waveguide Iris Filter Using the Impedance Inverter Modelp. 521
14.6 Design Example of a Microstrip Filter Using the J-Admittance Inverter Modelp. 524
Summaryp. 529
Referencesp. 530
15 Advanced EM-Based Design Techniques for Microwave Filtersp. 531
15.1 EM-Based Synthesis Techniquesp. 532
15.2 EM-Based Optimization Techniquesp. 532
15.2.1 Optimization Using an EM Simulatorp. 534
15.2.2 Optimization Using Semi-EM-Based Simulatorp. 535
15.2.3 Optimization Using an EM Simulator with Adaptive Frequency Samplingp. 537
15.2.4 Optimization Using EM-Based Neural Network Modelsp. 538
15.2.5 Optimization Using EM-Based Multidimensional Cauchy Techniquep. 543
15.2.6 Optimization Using EM-Based Fuzzy Logicp. 544
15.3 EM-Based Advanced Design Techniquesp. 544
15.3.1 Space Mapping Techniquesp. 545
15.3.2 Calibrated Coarse Model (CCM) Techniquesp. 553
15.3.3 Generalized Calibrated Coarse Model Technique for Filter Designp. 559
Summaryp. 563
Referencesp. 564
16 Dielectric Resonator Filtersp. 567
16.1 Resonant Frequency Calculation in Dielectric Resonatorsp. 568
16.2 Rigorous Analyses of Dielectric Resonatorsp. 572
16.2.1 Mode Charts for Dielectric Resonatorsp. 574
16.3 Dielectric Resonator Filter Configurationsp. 576
16.4 Design Considerations for Dielectric Resonator Filtersp. 580
16.4.1 Achievable Filter Q Valuep. 580
16.4.2 Spurious Performance of Dielectric Resonator Filtersp. 581
16.4.3 Temperature Driftp. 582
16.4.4 Power Handling Capabilityp. 583
16.5 Other Dielectric Resonator Configurationsp. 583
16.6 Cryogenic Dielectric Resonator Filtersp. 587
16.7 Hybrid Dielectric/Superconductor Filtersp. 589
Summaryp. 592
Referencesp. 593
17 Allpass Phase and Group Delay Equalizer Networksp. 595
17.1 Characteristics of Allpass Networksp. 596
17.2 Lumped-Element Allpass Networksp. 597
17.2.1 Resistively Terminated Symmetric Lattice Networksp. 599
17.2.2 Network Realizationsp. 601
17.3 Microwave Allpass Networksp. 603
17.4 Physical Realization of Allpass Networksp. 608
17.4.1 Transmission-Type Equalizersp. 609
17.4.2 Reflection-Type Allpass Networksp. 609
17.5 Synthesis of Reflection-Type Allpass Networksp. 610
17.6 Practical Narrowband Reflection-Type Allpass Networksp. 612
17.6.1 C-Section Allpass Equalizer in Waveguide Structurep. 613
17.6.2 D-Section Allpass Equalizer in Waveguide Structurep. 615
17.6.3 Narrowband TEM Reactance Networksp. 615
17.7 Optimization Criteria for Allpass Networksp. 616
17.8 Effect of Dissipationp. 620
17.8.1 Dissipation Loss of a Lumped-Element First-Order Allpass Equalizerp. 620
17.8.2 Dissipation Loss of a Second-Order Lumped Equalizerp. 621
17.8.3 Effect of Dissipation in Distributed Allpass Networksp. 621
17.9 Equalization Tradeoffsp. 622
Summaryp. 623
Referencesp. 623
18 Multiplexer Theory and Designp. 625
18.1 Backgroundp. 625
18.2 Multiplexer Configurationsp. 627
18.2.1 Hybrid Coupled Approachp. 627
18.2.2 Circulator-Coupled Approachp. 629
18.2.3 Directional Filter Approachp. 630
18.2.4 Manifold-Coupled Approachp. 630
18.3 RF Channelizers (Demultiplexers)p. 632
18.3.1 Hybrid Branching Networkp. 633
18.3.2 Circulator-Coupled MUXp. 634
18.3.3 En Passant Distortionp. 636
18.4 RF Combinersp. 638
18.4.1 Circulator-Coupled MUXp. 640
18.4.2 Hybrid-Coupled Filter Combiner Module (HCFM) Multiplexerp. 640
18.4.3 Directional Filter Combinerp. 643
18.4.4 Manifold Multiplexerp. 645
18.5 Transmit-Receive Diplexersp. 661
18.5.1 Internal Voltage Levels in Tx/Rx Diplexer Filtersp. 665
Summaryp. 668
Referencesp. 669
19 Computer-Aided Diagnosis and Tuning of Microwave Filtersp. 671
19.1 Sequential Tuning of Coupled Resonator Filtersp. 672
19.2 Computer-Aided Tuning Based on Circuit Model Parameter Extractionp. 678
19.3 Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficientp. 683
19.4 Time-Domain Tuningp. 687
19.4.1 Time-Domain Tuning of Resonator Frequenciesp. 688
19.4.2 Time-Domain Tuning of Interresonator Couplingp. 689
19.4.3 Time-Domain Response of a Golden Filterp. 691
19.5 Filter Tuning Based on Fuzzy Logic Techniquesp. 692
19.5.1 Description of Fuzzy Logic Systemsp. 693
19.5.2 Steps in Building the FL Systemp. 694
19.5.3 Comparison Between Boolean Logic and Fuzzy Logicp. 697
19.5.4 Applying Fuzzy Logic to Filter Tuningp. 700
19.6 Automated Setups for Filter Tuningp. 703
Summaryp. 706
Referencesp. 707
20 High-Power Considerations in Microwave Filter Networksp. 711
20.1 Backgroundp. 711
20.2 High-Power Requirements in Wireless Systemsp. 712
20.3 High-Power Amplifiers (HPAs)p. 713
20.4 High-Power Breakdown Phenomenap. 714
20.4.1 Gaseous Breakdownp. 715
20.4.2 Mean Free Pathp. 715
20.4.3 Diffusionp. 716
20.4.4 Attachmentp. 716
20.4.5 Breakdown in Airp. 716
20.4.6 Critical Pressurep. 717
20.4.7 Power Rating of Waveguides and Coaxial Transmission Linesp. 719
20.4.8 Derating Factorsp. 720
20.4.9 Impact of Thermal Dissipation on Power-Ratingp. 721
20.5 High-Power Bandpass Filtersp. 722
20.5.1 Bandpass Filters Limited by Thermal Dissipationp. 723
20.5.2 Bandpass Filters Limited by Voltage Breakdownp. 724
20.5.3 Filter Prototype Networkp. 724
20.5.4 Lumped To Distributed Scalingp. 725
20.5.5 Resonator Voltages from Prototype Networkp. 726
20.5.6 Example and Verification Via FEM Simulationp. 727
20.5.7 Example of High Voltages in a Multiplexerp. 729
20.6 Multipaction Breakdownp. 730
20.6.1 Dependence on Vacuum Environmentp. 730
20.6.2 Dependence on Applied RF Voltagep. 730
20.6.3 Dependence on f x d Productp. 731
20.6.4 Dependence on Surface Conditions of Materialsp. 732
20.6.5 Detection and Prevention of Multipactionp. 732
20.6.6 Design Margins in Multipactionp. 733
20.6.7 Multipactor Breakdown Levelsp. 737
20.7 Passive Intermodulation (PIM) Consideration for High-Power Equipmentp. 739
20.7.1 PIM Measurementp. 740
20.7.2 PIM Control Guidelinesp. 741
Summaryp. 742
Referencesp. 743
Appendix A

p. 745

Appendix B

p. 747

Appendix C

p. 749

Appendix D

p. 751

Indexp. 753