Cover image for Model-based fault diagnosis in dynamic systems using identification techniques
Title:
Model-based fault diagnosis in dynamic systems using identification techniques
Personal Author:
Series:
Advances in industrial control
Publication Information:
London : Springer-Verlag, 2003
ISBN:
9781852336851

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010029198 TA169.6 S56 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.


Table of Contents

Symbols and Abbreviationsp. xv
1 Introductionp. 1
1.1 Nomenclaturep. 3
1.2 Fault Detection and Identification Methods based on Analytical Redundancyp. 5
1.3 Model-based Fault Detection Methodsp. 7
1.4 Model Uncertainty and Fault Detectionp. 8
1.5 The Robustness Problem in Fault Detectionp. 9
1.6 System Identification for Robust FDIp. 11
1.7 Fault Identification Methodsp. 12
1.8 Report on FDI Applicationsp. 13
1.9 Outline of the Bookp. 16
1.10 Summaryp. 18
2 Model-based Fault Diagnosis Techniquesp. 19
2.1 Introductionp. 19
2.2 Model-based FDI Techniquesp. 20
2.3 Modelling of Faulty Systemsp. 21
2.4 Residual Generator General Structurep. 28
2.5 Residual Generation Techniquesp. 31
2.5.1 Residual Generation via Parameter Estimationp. 32
2.5.2 Observer-based Approachesp. 35
2.5.3 Fault Detection with Parity Equationsp. 40
2.6 Change Detection and Symptom Evaluationp. 44
2.7 The Residual Generation Problemp. 45
2.8 Fault Diagnosis Technique Integrationp. 51
2.8.1 Fuzzy Logic for Residual Generationp. 51
2.8.2 Neural Networks in Fault Diagnosisp. 53
2.8.3 Neuro-fuzzy Approaches to FDIp. 54
2.8.4 Structure Identification of NF Modelsp. 56
2.8.5 NF Residual Generation Scheme for FDIp. 57
2.9 Summaryp. 59
3 System Identification for Fault Diagnosisp. 61
3.1 Introductionp. 61
3.2 Models for Linear Systemsp. 62
3.3 Parameter Estimation Methodsp. 64
3.3.1 System Identification in Noiseless Environmentp. 65
3.3.2 System Identification in Noisy Environmentp. 68
3.3.3 The Frisch Scheme in the MIMO Casep. 73
3.4 Models for Non-linear Dynamic Systemsp. 75
3.4.1 Piecewise Affine Modelp. 75
3.4.2 Model Continuity and Domain Partitioningp. 79
3.4.3 Local Affine Model Identificationp. 82
3.4.4 Multiple-Model Identificationp. 85
3.5 Fuzzy Modelling and Identificationp. 89
3.5.1 Fuzzy Multiple Inference Identificationp. 90
3.5.2 Takagi-Sugeno Multiple-Model Paradigmp. 92
3.5.3 Fuzzy Clustering for Fuzzy Identificationp. 95
3.5.4 Product Space Clustering and Fuzzy Model Identificationp. 100
3.5.5 Non-linear Regression Problem and Black-Box Modelsp. 103
3.5.6 Fuzzy Model Identification From Clustersp. 107
3.6 Conclusionp. 112
4 Residual Generation, Fault Diagnosis and Identificationp. 115
4.1 Introductionp. 115
4.2 Output Observers for Robust Residual Generationp. 116
4.3 Unknown Input Observerp. 119
4.3.1 UIO Mathematical Descriptionp. 120
4.3.2 UIO Design Procedurep. 122
4.4 FDI Schemes Based on UIO and Output Observersp. 122
4.5 Sliding Mode Observers for FDIp. 127
4.5.1 Sliding Mode Observersp. 128
4.6 Kalman Filtering and FDI from Noisy Measurementsp. 130
4.7 Residual Robustness to Disturbancesp. 131
4.7.1 Disturbance Distribution Matrix Estimationp. 132
4.7.2 Additive Non-linear Disturbance and Noisep. 133
4.7.3 Model Complexity Reductionp. 133
4.7.4 Parameter Uncertaintyp. 134
4.7.5 Distribution Matrix Low Rank Approximationp. 135
4.7.6 Model Estimation with Bounded Uncertaintyp. 135
4.7.7 Disturbance Vector and Disturbance Matrix Estimationp. 136
4.7.8 Distribution Matrix Optimisationp. 139
4.7.9 Disturbance Distribution Matrix Identificationp. 139
4.8 Residual Generation via Parameter Estimationp. 141
4.9 Residual Generation via Fuzzy Modelsp. 142
4.10 FDI Using Neural Networksp. 143
4.10.1 Neural Network Basicsp. 145
4.11 Fault Diagnosis of an Industrial Plant at Different Operating Points Using Neural Networksp. 147
4.11.1 Operating Point Detection and Fault Diagnosisp. 147
4.11.2 FDI Method Developmentp. 149
4.12 Neuro-fuzzy in FDIp. 150
4.12.1 Methods of Neuro-fuzzy Integrationp. 151
4.12.2 Neuro-fuzzy Networksp. 152
4.12.3 Residual Generation Using Neuro-fuzzy Modelsp. 154
4.12.4 Neuro-fuzzy-based Residual Evaluationp. 155
4.13 Summaryp. 156
5 Fault Diagnosis Application Studiesp. 157
5.1 Introductionp. 157
5.2 Physical Background and Modelling Aspects of an Industrial Gas Turbinep. 158
5.2.1 Gas Turbine Model Descriptionp. 158
5.3 Identification and FDI of a Single Shaft Industrial Gas Turbinel68
5.3.1 System Identificationp. 169
5.3.2 FDI Using Dynamic Observersp. 176
5.3.3 FDI Using Kalman Filtersp. 183
5.3.4 Fuzzy System Identification and FDIp. 189
5.3.5 Sensor Fault Identification Using Neural Networksp. 191
5.3.6 Multiple Working Conditions FDI Using Neural Networksp. 196
5.3.7 FDI Method Developmentp. 196
5.3.8 Multiple Operating Point Simulation Resultsp. 197
5.4 Identification and FDI of Double Shaft Industrial Gas Turbinep. 199
5.4.1 Process Descriptionp. 199
5.4.2 System Identificationp. 201
5.4.3 FDI Using Unknown Input Observersp. 203
5.4.4 FDI Using Kalman Filtersp. 208
5.4.5 Disturbance Decoupled Observers for Sensor FDIp. 209
5.4.6 Fuzzy Models for Fault Diagnosisp. 210
5.5 Modelling and FDI of a Turbine Prototypep. 214
5.5.1 System Modelling and Identificationp. 215
5.6 Turbine FDI Using Output Observersp. 220
5.6.1 Case 1: Compressor Failure (Component Fault)p. 221
5.6.2 Case 2: Fault Diagnosis of the Output Sensorp. 223
5.6.3 Case 3: Turbine Damage (Turbine Component Fault)p. 227
5.6.4 Case 4: Actuator Fault (Controller Malfunctioning)p. 228
5.6.5 FDI in Noisy Environment Using Kalman Filtersp. 233
5.6.6 Fault Isolationp. 235
5.6.7 Minimal Detectable Faultsp. 239
5.7 FDI with Eigenstructure Assignmentp. 242
5.7.1 Robust Fault Diagnosis of the Industrial Processp. 243
5.8 Robust Residual Generation Problemp. 247
5.9 Summaryp. 249
6 Concluding Remarksp. 251
6.1 Suggestions for Future Workp. 253
6.1.1 Frequency Domain Residual Generationp. 253
6.1.2 Adaptive Residual Generatorsp. 255
6.1.3 Integration of Identification, FDI and Controlp. 256
6.1.4 Fault Identificationp. 256
6.1.5 Fault Diagnosis of Non-Linear Dynamic Systemsp. 258
Referencesp. 261
Indexp. 279