Cover image for Chemical modelling : applications and theory
Title:
Chemical modelling : applications and theory
Series:
A specialist Periodical Report v.1
Publication Information:
Cambridge, UK : Royal Society of Chemistry, 2000
Physical Description:
v.
ISBN:
9780854042548

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004888545 QD450 C53 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.


Table of Contents

David PughT.E. SimosP.L.A. Popelier and F.M. Aicken and S.E. O'BrienR.I. Maurer and C.J. ReynoldsPekka Pyykko and Hermann StollMichael SpringborgS. WilsonJanos J. Ladik
Chapter 1 Electric Multipoles, Polarizabilities and Hyperpolarizabilitiesp. 1
1 Introductionp. 1
2 Perturbation of Molecules by Static Electric Fields: General Theoryp. 2
2.1 Analytic Derivatives of the Energyp. 3
3 Frequency-Dependent Polarizabilities: General Theoryp. 4
3.1 Time-Dependent Perturbation Theory: The Sum over States Methodp. 5
3.1.1 Second Order Effectsp. 6
3.1.2 Third Order Effectsp. 7
3.2 Measurement of the Dynamic Hyperpolarizabilitiesp. 7
4 Methods of Calculation: Development from 1970 to 1998p. 7
4.1 Permanent Multipolesp. 8
4.2 Static Polarizabilities and Hyperpolarizabilitiesp. 8
4.3 Dynamic Response Functionsp. 10
4.4 The First Hyperpolarizability of Organic Donor/Acceptor Moleculesp. 11
4.5 Calculations of the Second Hyperpolarizabilityp. 13
5 Review of Literature: 1998-May 1999p. 14
5.1 Dipole and Quadrupole Momentsp. 14
5.2 Polarizabilities and Hyperpolarizabilities of Small Moleculesp. 15
5.2.1 Diatomic Moleculesp. 15
5.2.2 Butadienep. 17
5.2.3 Static Polarizabilities and Hyperpolarizabilities by ab initio Methodsp. 18
5.2.4 Dynamic Polarizabilities and Hyperpolarizabilities by ab initio Methodsp. 19
5.2.5 Density Functional Calculationsp. 19
5.2.6 Clusters and Small Homologous Seriesp. 20
5.2.7 Excited State Polarizabilitiesp. 21
5.3 Polarizabilities and Hyperpolarizabilities of Larger Moleculesp. 21
5.3.1 Ab initio Calculationsp. 21
5.3.2 Semi-Empirical Methodsp. 22
5.3.3 Linear Conjugated Chainsp. 24
5.3.4 Vibrational Polarizationp. 26
5.3.5 Fullerenesp. 27
5.3.6 Solvent Effects, Crystal Fieldsp. 28
5.3.7 New Theoretical Developmentsp. 29
Referencesp. 30
Chapter 2 Atomic Structure Computationsp. 38
1 Introductionp. 38
2 Methods with Coefficients Dependent on the Frequency of the Problemp. 39
2.1 Exponential Multistep Methodsp. 39
2.1.1 The Derivation of Exponentially-Fitted Methods for General Problemsp. 40
2.1.2 Exponentially-Fitted Methodsp. 41
2.1.3 Linear Multistep Methodsp. 42
2.1.4 Predictor-Corrector Methodsp. 44
2.1.5 New Insights in Exponentially-Fitted Methodsp. 49
2.1.6 A New Tenth Algebraic Order Exponentially-Fitted Methodp. 54
2.1.7 Open Problems in Exponentially Fittingp. 58
2.2 Bessel and Neumann Fitted Methodsp. 58
2.3 Phase Fitted Methodsp. 66
2.3.1 A New Phase Fitted Methodp. 71
2.4 Numerical Illustrations for Exponentially-Fitted Methods and Phase Fitted Methodsp. 73
2.4.1 The Resonance Problem: Woods-Saxon Potentialp. 74
2.4.2 Modified Woods-Saxon Potential: Coulombian Potentialp. 76
2.4.3 The Bound-States Problemp. 77
2.4.4 Remarks and Conclusionp. 77
3 Theory for Constructing Methods with Constant Coefficients for the Numerical Solution of Schrodinger Type Equationsp. 84
3.1 Phase-lag Analysis for Symmetric Two-Step Methodsp. 84
3.2 Phase-lag Analysis of General Symmetric 2k-Step, k [set membership] N Methodsp. 85
3.3 Phase-lag Analysis of Dissipative (Non-Symmetric) Two-Step Methodsp. 87
3.4 Phase-lag Analysis of the Runga-Kutta Methodsp. 89
3.5 Phase-lag Analysis of the Runga-Kutta-Nystrom Methodsp. 91
4 Methods with Constant Coefficientsp. 93
4.1 Implicit Methodsp. 93
4.1.1 P-Stable Methodsp. 93
4.1.2 Methods with Non-Empty Interval of Periodicityp. 104
4.2 Explicit Methodsp. 110
4.2.1 Fourth Algebraic Order Methodsp. 110
4.2.2 Sixth Algebraic Order Methodsp. 110
4.2.3 Eighth Algebraic Order Methodsp. 111
5 Variable-Step Methodsp. 114
6 P-Stable Methods of High Exponential Orderp. 117
7 Matrix Methods for the One-Dimensional Eigenvalue Schrodinger Equationp. 119
7.1 Methods of Discretizationp. 119
7.1.1 Methods Which Lead to a Tridiagonal Form of the Matrix Ap. 120
7.1.2 Methods Which Lead to a Pentadiagonal Form of the Matrix Ap. 120
7.1.3 Methods Which Lead to a Heptadiagonal Form of the Matrix Ap. 120
7.1.4 Numerov Discretizationp. 120
7.1.5 Extended Numerov Formp. 120
7.1.6 An Improved Four-Step Methodp. 121
7.1.7 An Improved Three-Step Methodp. 121
7.1.8 An Improved Hybrid Four-Step Methodp. 122
7.2 Discussionp. 123
8 Runga-Kutta and Runga-Kutta-Nystrom Methods for Specific Schrodinger Equationsp. 123
9 Two Dimensional Eigenvalue Schrodinger Equationp. 124
10 Numerical Illustrations for the Methods with Constant Coefficients and the Variable-Step Methodsp. 125
10.1 Methods with Constant Coefficientsp. 125
10.1.1 Remarks and Conclusionp. 126
10.2 Variable-Step Methodsp. 127
10.2.1 Error Estimationp. 127
10.2.2 Coupled Differential Equationsp. 128
10.3 Remarks and Conclusionp. 132
Appendixp. 133
Referencesp. 140
Chapter 3 Atoms in Moleculesp. 143
1 Introductionp. 143
1.1 What Is AIM?p. 143
1.2 Scopep. 144
1.3 The Roots of AIMp. 146
1.4 The Development of AIMp. 147
1.5 Softwarep. 149
2 Theoreticalp. 149
2.1 Open Systemsp. 149
2.2 Molecular Similarity and QSARp. 150
2.3 Electron Correlationp. 151
2.4 Transferabilityp. 151
2.5 Multipolesp. 152
2.6 Molecular Dynamicsp. 152
2.7 Partitioningp. 153
3 The Laplacianp. 153
3.1 Alternative Wave Functionsp. 153
3.2 Relation to Bohm Quantum Potentialp. 154
3.3 Protonationp. 154
4 Electron Densities from High-resolution X-ray Diffractionp. 156
4.1 State of the Artp. 156
4.2 Comparison between Experimental and Theoretical Densitiesp. 156
4.3 Hydrogen Bondingp. 160
4.4 Organic Compoundsp. 163
4.5 Transition Metal Compoundsp. 166
4.6 Mineralsp. 170
5 Chemical Bondingp. 171
5.1 Theoryp. 171
5.2 Ligand Close Packing (LCP) Modelp. 172
5.3 Hypervalencyp. 172
5.4 Organic Compoundsp. 173
5.5 Transition Metal Compoundsp. 174
5.6 Mineralsp. 177
5.7 Solid Statep. 178
5.8 Compounds of Atmospheric Interestp. 178
5.9 Van der Waals Complexesp. 179
6 Hydrogen Bondingp. 179
6.1 Reviewp. 179
6.2 Relationshipsp. 180
6.3 Cooperative Effectp. 180
6.4 Bifurcated Hydrogen Bondsp. 182
6.5 Low-barrier Hydrogen Bondsp. 182
6.6 Dihydrogen Bondsp. 184
6.7 Very Strong Hydrogen Bondsp. 184
6.8 Organic Compoundsp. 184
6.9 Biochemical Compoundsp. 185
6.10 Compounds of Atmospheric Importancep. 187
7 Reactionsp. 188
7.1 Organic Compoundsp. 188
7.2 Inorganic Compoundsp. 190
8 Conclusionp. 192
9 Disclaimerp. 192
Referencesp. 193
Chapter 4 Modelling Biological Systemsp. 199
1 Introductionp. 199
2 G-Protein Coupled Receptorsp. 200
3 Protein-Protein Dockingp. 201
3.1 Traditional Docking Approachesp. 201
3.2 Sequence-based Approaches to Dockingp. 202
4 Simulations on the Early Stages of Protein Foldingp. 202
5 Simulations on DNAp. 205
5.1 Particle Mesh Ewaldp. 206
6 Free Energy Calculationsp. 206
6.1 Free Energy Calculations from a Single Reference Simulationp. 208
6.2 Multimolecule Free Energy Methodsp. 209
6.3 Linear Response Methodp. 210
6.4 Free Energy Perturbation Methods with Quantum Energiesp. 211
6.5 Force Fieldsp. 211
7 Continuum Methodsp. 212
7.1 Parameter Dependencep. 213
7.2 pK[subscript a] Calculationsp. 214
7.3 Binding Studiesp. 216
7.4 Protein Folding and Stabilityp. 217
7.5 Solvation and Conformational Energiesp. 219
7.6 Redox Studiesp. 220
7.7 Additional Studiesp. 221
8 Hybrid QM/MM Calculationsp. 221
8.1 Methodology Developmentsp. 222
8.2 The Modelsp. 223
8.3 The Link Atom Problemp. 226
8.4 Miscellaneous Improvementsp. 228
8.5 The 'Onion' Approachp. 229
8.6 Applicationsp. 230
8.6.1 Nickel-Iron Hydrogenasep. 230
8.6.2 [beta]-Lactam Hydrolysisp. 230
8.6.3 Bacteriorhodopsinp. 231
8.6.4 The Bacterial Photosynthetic Reaction Centrep. 231
8.6.5 Other Studiesp. 232
9 Car-Parrinello Calculationsp. 232
Acknowledgementp. 233
Referencesp. 233
Chapter 5 Relativistic Pseudopotential Calculations, 1993-June 1999p. 239
1 Methodsp. 239
1.1 Introductionp. 239
1.2 Model Potentialsp. 242
1.3 Shape-Consistent Pseudopotentialsp. 246
1.4 DFT-Based Pseudopotentialsp. 250
1.5 Soft-Core Pseudopotentials and Separabilityp. 252
1.6 Energy-Consistent Pseudopotentialsp. 255
1.7 Core-Polarization Pseudopotentialsp. 257
1.8 Concluding Remarksp. 259
2 Applications by Elementp. 260
3 Some Applications by Subjectp. 260
3.1 New Speciesp. 260
3.2 Metal-Ligand Interactionsp. 260
3.3 Closed-Shell Interactionsp. 260
3.4 Chemical Reactions and Homogeneous Catalysisp. 278
3.5 Chemisorption and Heterogeneous Catalysisp. 278
3.6 Otherp. 278
Acknowledgementsp. 278
Referencesp. 278
Chapter 6 Density-Functional Theoryp. 306
1 Introductionp. 306
2 Fundamentalsp. 307
2.1 Wavefunction-based Methodsp. 308
2.2 Approximating the Schrodinger Equationp. 310
2.3 Density-functional Theoryp. 312
2.4 Hybrid Methodsp. 318
3 Structural Propertiesp. 319
3.1 Structure Optimizationp. 320
3.2 Examples of Structure Optimizationsp. 322
4 Vibrationsp. 328
5 Relative Energiesp. 329
5.1 Dissociation Energiesp. 329
5.2 Comparing Isomersp. 330
6 Chemical Reactionsp. 331
6.1 Transition Statesp. 331
6.2 Hardness, Softness and Other Descriptorsp. 333
7 Weak Bondsp. 338
7.1 Van Der Waals Bondsp. 338
7.2 Hydrogen Bondsp. 338
8 The Total Electron Densityp. 340
9 The Orbitalsp. 340
10 Excitationsp. 343
11 Spin Propertiesp. 346
11.1 NMR Chemical Shiftsp. 346
11.2 Electron Spinp. 347
11.3 Electronic Spin-Spin Couplingsp. 349
11.4 Nuclear Spin-Spin Couplingsp. 350
12 Electrostatic Fieldsp. 350
13 Solvationp. 352
13.1 Dielectric Continuump. 352
13.2 Point Chargesp. 353
14 Solidsp. 353
14.1 Band Structuresp. 354
14.2 Applicationsp. 354
15 Liquidsp. 356
16 Surfaces as Catalystsp. 357
17 Intermediate-sized Systemsp. 358
18 Conclusionsp. 359
Acknowledgementsp. 360
Referencesp. 361
Chapter 7 Many-body Perturbation Theory and Its Application to the Molecular Electronic Structure Problemp. 364
1 Introductionp. 364
1.1 A Personal Notep. 368
2 Theoretical Apparatus and Practical Algorithmsp. 369
2.1 Quantum Electrodynamics and Many-body Perturbation Theoryp. 369
2.1.1 The N-Dependence of Perturbation Expansionsp. 371
2.1.2 The Linked Diagram Theoremp. 377
2.2 Many-body Perturbation Theoryp. 384
2.2.1 Closed-shell Moleculesp. 388
2.2.2 Open-shell Moleculesp. 400
2.3 Relativistic Many-body Perturbation Theoryp. 400
2.3.1 The Dirac Spectrum in the Algebraic Expansionp. 403
2.3.2 Many-electron Relativistic Hamiltoniansp. 406
2.3.3 The 'No Virtual Pair' Approximationp. 407
2.3.4 Quantum Electrodynamics and Virtual Pair Creation Processesp. 409
2.4 The Algebraic Approximationp. 409
2.4.1 Gaussian Basis Sets and Finite Nucleip. 410
2.4.2 Even-tempered Basis Setsp. 410
2.4.3 Symmetric Sequences of Basis Setsp. 411
2.4.4 Universal Basis Setsp. 414
2.5 Higher Order Correlation Energy Componentsp. 416
2.5.1 Fourth Order Energy Componentsp. 416
2.5.2 Fifth Order Energy Componentsp. 420
2.5.3 Higher Order Energy Componentsp. 428
2.6 The Use of Multireference Functions in Perturbation Theoryp. 429
2.7 Concurrent Computation Many-body Perturbation Theory (ccMBPT)p. 430
2.7.1 Parallel Computing and Its Impactp. 430
2.7.2 Concurrent Computation and Performance Modelling: ccMBPTp. 433
2.8 Analysis of Different Approaches to the Electron Correlation Problem in Moleculesp. 438
2.8.1 Configuration Mixingp. 438
2.8.2 Coupled Electron Pair and Cluster Expansionsp. 440
3 Applications of Many-body Perturbation Theoryp. 441
3.1 Graphical User Interfacesp. 441
3.2 Universal Basis Sets and Direct ccMBPTp. 442
3.3 Finite Element Methods Applied to Many-body Perturbation Theoryp. 443
4 Future Directionsp. 444
Acknowledgementsp. 445
Referencesp. 445
Chapter 8 New Developments on the Quantum Theory of Large Molecules and Polymersp. 453
1 Introductionp. 453
2 The Treatment of Large Molecules Using Solid State Physical Methods Developed for Aperiodic Chainsp. 454
2.1 The Negative Factor Counting Methods with Correlation and Methods to Calculate Effective Total Energy per Unit Cell of Disordered Chainsp. 455
2.1.1 The Matrix Block Negative Factor Counting Methodp. 455
2.1.2 The Inclusion of Correlation in the Calculation of Density of States of Disordered Chainsp. 459
2.1.3 The Calculation of Effective Total Energy per Unit Cellp. 460
2.2 Application to Proteins and Nucleotide Base Stacksp. 461
2.3 Possible Application of the Negative Factor Counting Method to Large Moleculesp. 463
3 Correlation Corrected Energy Band Structures of Different Periodic Polymersp. 464
3.1 Methodsp. 464
3.1.1 Inverse Dyson Equation with MP2 Self Energyp. 464
3.1.2 Formulation of the Coupled Cluster Method for Quasi 1D Polymersp. 465
3.1.3 Analytic Energy Gradientsp. 468
3.2 Examples of Correlation Corrected Band Structures of Quasi 1D Polymersp. 471
4 Application of First Principles Density Functional Theory (DFT) to Polymersp. 474
4.1 Methodsp. 474
4.2 Examples of LDA Calculations on Polymersp. 476
5 Non-linear Optical Properties of Polymersp. 478
5.1 Theory of Non-linear Optical Properties of Quasi 1D Periodic Polymersp. 478
5.1.1 Solid State Physical Methodsp. 478
5.1.2 Large Clusters and Extrapolated Oligomersp. 493
5.2 Results of Calculations of NLO Properties and Their Discussionp. 494
5.2.1 Solid State Physical Calculationsp. 494
5.2.2 Extrapolated Oligomer Calculationsp. 495
6 Conformational Solitons in DNA and Their Possible Role in Cancer Inhibitionp. 496
Acknowledgementp. 500
Referencesp. 500