Cover image for Finite-dimensional linear algebra
Title:
Finite-dimensional linear algebra
Personal Author:
Series:
Discrete mathematics and its applications
Publication Information:
Boca Raton, FL : CRC Press, c2010
Physical Description:
xxi, 650 p. : ill. ; 25 cm.
ISBN:
9781439815632
General Note:
"A Chapman & Hall book."

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010265717 QA184.2 G63 2010 Open Access Book Book
Searching...

On Order

Summary

Summary

Linear algebra forms the basis for much of modern mathematics--theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation.

The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jordan canonical form, an important theoretical tool, and the singular value decomposition, a powerful tool for computation. The final chapters present introductions to numerical linear algebra and analysis in vector spaces, including a brief introduction to functional analysis (infinite-dimensional linear algebra).

Drawing on material from the author's own course, this textbook gives students a strong theoretical understanding of linear algebra. It offers many illustrations of how linear algebra is used throughout mathematics.


Author Notes

Mark S. Gockenbach is a professor and chair of the Department of Mathematical Sciences at Michigan Technological University.


Table of Contents

Prefacep. xv
About the authorp. xxi
1 Some problems posed on vector spacesp. 1
1.1 Linear equationsp. 1
1.1.1 Systems of linear algebraic equationsp. 1
1.1.2 Linear ordinary differential equationsp. 4
1.1.3 Some interpretation: The structure of the solution set to a linear equationp. 5
1.1.4 Finite fields and applications in discrete mathematicsp. 7
1.2 Best approximationp. 8
1.2.1 Overdetermined linear systemsp. 8
1.2.2 Best approximation by a polynomialp. 11
1.3 Diagonalizationp. 13
1.4 Summaryp. 17
2 Fields and vector spacesp. 19
2.1 Fieldsp. 19
2.1.1 Definition and examplesp. 19
2.1.2 Basic properties of fieldsp. 21
2.2 Vector spacesp. 29
2.2.1 Examples of vector spacesp. 31
2.3 Subspacesp. 38
2.4 Linear combinations and spanning setsp. 43
2.5 Linear independencep. 50
2.6 Basis and dimensionp. 57
2.7 Properties of basesp. 66
2.8 Polynomial interpolation and the Lagrange basisp. 73
2.8.1 Secret sharingp. 77
2.9 Continuous piecewise polynomial functionsp. 82
2.9.1 Continuous piecewise linear functionsp. 84
2.9.2 Continuous piecewise quadratic functionsp. 87
2.9.3 Error in polynomial interpolationp. 90
3 Linear operatorsp. 93
3.1 Linear operatorsp. 93
3.1.1 Matrix operatorsp. 95
3.2 More properties of linear operatorsp. 101
3.2.1 Vector spaces of operatorsp. 101
3.2.2 The matrix of a linear operator on Euclidean spacesp. 101
3.2.3 Derivative and differential operatorsp. 103
3.2.4 Representing spanning sets and bases using matricesp. 103
3.2.5 The transpose of a matrixp. 104
3.3 Isomorphic vector spacesp. 107
3.3.1 Injective and surjective functions; inversesp. 108
3.3.2 The matrix of a linear operator on general vector spacesp. 111
3.4 Linear operator equationsp. 116
3.4.1 Homogeneous linear equationsp. 117
3.4.2 Inhomogeneous linear equationsp. 118
3.4.3 General solutionsp. 120
3.5 Existence and uniqueness of solutionsp. 124
3.5.1 The kernel of a linear operator and injectivityp. 124
3.5.2 The rank of a linear operator and surjectivityp. 126
3.5.3 Existence and uniquenessp. 128
3.6 The fundamental theorem; inverse operatorsp. 131
3.6.1 The inverse of a linear operatorp. 133
3.6.2 The inverse of a matrixp. 134
3.7 Gaussian eliminationp. 142
3.7.1 Computing A -1p. 148
3.7.2 Fields other than Rp. 149
3.8 Newton's methodp. 153
3.9 Linear ordinary differential equationsp. 158
3.9.1 The dimension of ker(L)p. 158
3.9.2 Finding a basis for ker(L)p. 161
3.9.2.1 The easy case: Distinct real rootsp. 162
3.9.2.2 The case of repeated real rootsp. 162
3.9.2.3 The case of complex rootsp. 163
3.9.3 The Wronskian test for linear independencep. 163
3.9.4 The Vandermonde matrixp. 166
3.10 Graph theoryp. 168
3.10.1 The incidence matrix of a graphp. 168
3.10.2 Walks and matrix multiplicationp. 169
3.10.3 Graph isomorphismsp. 171
3.11 Coding theoryp. 175
3.11.1 Generator matrices; encoding and decodingp. 177
3.11.2 Error correctionp. 179
3.11.3 The probability of errorsp. 181
3.12 Linear programmingp. 183
3.12.1 Specification of linear programming problemsp. 184
3.12.2 Basic theoryp. 186
3.12.3 The simplex methodp. 191
3.12.3.1 Finding an initial BFSp. 196
3.12.3.2 Unbounded LPsp. 199
3.12.3.3 Degeneracy and cyclingp. 200
3.12.4 Variations on the standard LPsp. 202
4 Determinants and eigenvaluesp. 205
4.1 The determinant functionp. 206
4.1.1 Permutationsp. 210
4.1.2 The complete expansion of the determinantp. 212
4.2 Further properties of the determinant functionp. 217
4.3 Practical computation of det (A)p. 221
4.3.1 A recursive formula for det (A)p. 224
4.3.2 Cramer's rulep. 226
4.4 A note about polynomialsp. 230
4.5 Eigenvalues and the characteristic polynomialp. 232
4.5.1 Eigenvalues of real matrixp. 235
4.6 Diagonalizationp. 241
4.7 Eigenvalues of linear operatorsp. 251
4.8 Systems of linear ODEsp. 257
4.8.1 Complex eigenvaluesp. 259
4.8.2 Solving the initial value problemp. 260
4.8.3 Linear systems in matrix formp. 261
4.9 Integer programmingp. 265
4.9.1 Totally unimodular matricesp. 265
4.9.2 Transportation problemsp. 268
5 The Jordan canonical formp. 273
5.1 Invariant subspacesp. 273
5.1.1 Direct sumsp. 276
5.1.2 Eigenspaces and generalized eigenspacesp. 277
5.2 Generalized eigenspacesp. 283
5.2.1 Appendix: Beyond generalized eigenspacesp. 290
5.2.2 The Cayley-Hamilton theoremp. 294
5.3 Nilpotent operatorsp. 300
5.4 The Jordan canonical form of a matrixp. 309
5.5 The matrix exponentialp. 318
5.5.1 Definition of the matrix exponentialp. 319
5.5.2 Computing the matrix exponentialp. 319
5.6 Graphs and eigenvaluesp. 325
5.6.1 Cospectral graphsp. 325
5.6.2 Bipartite graphs and eigenvaluesp. 326
5.6.3 Regular graphsp. 328
5.6.4 Distinct eigenvalues of a graphp. 330
6 Orthogonality and best approximationp. 333
6.1 Norms and inner productsp. 333
6.1.1 Examples of norms and inner productsp. 337
6.2 The adjoint of a linear operatorp. 342
6.2.1 The adjoint of a linear operatorp. 343
6.3 Orthogonal vectors and basesp. 350
6.3.1 Orthogonal basesp. 351
6.4 The projection theoremp. 357
6.4.1 Overdetermined linear systemsp. 361
6.5 The Gram-Schmidt processp. 368
6.5.1 Least-squares polynomial approximationp. 371
6.6 Orthogonal complementsp. 377
6.6.1 The fundamental theorem of linear algebra revisitedp. 381
6.7 Complex inner product spacesp. 386
6.7.1 Examples of complex inner product spacesp. 388
6.7.2 Orthogonality in complex inner product spacesp. 389
6.7.3 The adjoint of a linear operatorp. 390
6.8 More on polynomial approximationp. 394
6.8.1 A weighted L 2 inner productp. 397
6.9 The energy inner product and Galerkin's methodp. 401
6.9.1 Piecewise polynomialsp. 404
6.9.2 Continuous piecewise quadratic functionsp. 407
6.9.3 Higher degree finite element spacesp. 409
6.10 Gaussian quadraturep. 411
6.10.1 The trapezoidal rule and Simpson's rulep. 412
6.10.2 Gaussian quadraturep. 413
6.10.3 Orthogonal polynomialsp. 415
6.10.4 Weighted Gaussian quadraturep. 419
6.11 The Helmholtz decompositionp. 420
6.11.1 The divergence theoremp. 421
6.11.2 Stokes's theoremp. 422
6.11.3 The Helmholtz decompositionp. 423
7 The spectral theory of symmetric matricesp. 425
7.1 The spectral theorem for symmetric matricesp. 425
7.1.1 Symmetric positive definite matricesp. 428
7.1.2 Hermitian matricesp. 430
7.2 The spectral theorem for normal matricesp. 434
7.2.1 Outer products and the spectral decompositionp. 437
7.3 Optimization and the Hessian matrixp. 440
7.3.1 Backgroundp. 440
7.3.2 Optimization of quadratic functionsp. 441
7.3.3 Taylor's theoremp. 443
7.3.4 First-and second-order optimality conditionsp. 444
7.3.5 Local quadratic approximationsp. 446
7.4 Lagrange multipliersp. 448
7.5 Spectral methods for differential equationsp. 453
7.5.1 Eigenpairs of the differential operatorp. 454
7.5.2 Solving the BVP using eigenfunctionsp. 456
8 The singular value decompositionp. 463
8.1 Introduction to the SVDp. 463
8.1.1 The SVD for singular matricesp. 467
8.2 The SVD for general matricesp. 470
8.3 Solving least-squares problems using the SVDp. 476
8.4 The SVD and linear inverse problemsp. 483
8.4.1 Resolving inverse problems through regularizationp. 489
8.4.2 The truncated SVD methodp. 489
8.4.3 Tikhonov regularizationp. 490
8.5 The Smith normal form of a matrixp. 494
8.5.1 An algorithm to compute the Smith normal formp. 495
8.5.2 Applications of the Smith normal formp. 501
9 Matrix factorizations and numerical linear algebrap. 507
9.1 The LU factorizationp. 507
9.1.1 Operation countsp. 512
9.1.2 Solving Ax=b using the LU factorizationp. 514
9.2 Partial pivotingp. 516
9.2.1 Finite-precision arithmeticp. 517
9.2.2 Examples of errors in Gaussian eliminationp. 518
9.2.3 Partial pivotingp. 519
9.2.4 The PLU factorizationp. 522
9.3 The Cholesky factorizationp. 524
9.4 Matrix normsp. 530
9.4.1 Examples of induced matrix normsp. 534
9.5 The sensitivity of linear systems to errorsp. 537
9.6 Numerical stabilityp. 542
9.6.1 Backward error analysisp. 543
9.6.2 Analysis of Gaussian elimination with partial pivotingp. 545
9.7 The sensitivity of the least-squares problemp. 548
9.8 The QR factorizationp. 554
9.8.1 Solving the least-squares problemp. 556
9.8.2 Computing the QR factorizationp. 556
9.8.3 Backward stability of the Householder QR algorithmp. 561
9.8.4 Solving a linear systemp. 562
9.9 Eigenvalues and simultaneous iterationp. 564
9.9.1 Reduction to triangular formp. 564
9.9.2 The power methodp. 566
9.9.3 Simultaneous iterationp. 567
9.10 The QR algorithmp. 572
9.10.1 A practical QR algorithmp. 573
9.10.1.1 Reduction to upper Hessenberg formp. 574
9.10.1.2 The explicitly shifted QR algorithmp. 576
9.10.1.3 The implicitly shifted QR algorithmp. 579
10 Analysis in vector spacesp. 581
10.1 Analysis in R np. 581
10.1.1 Convergence and continuity in R np. 582
10.1.2 Compactnessp. 584
10.1.3 Completeness of R np. 586
10.1.4 Equivalence of norms on R np. 586
10.2 Infinite-dimensional vector spacesp. 590
10.2.1 Banach and Hilbert spacesp. 592
10.3 Functional analysisp. 596
10.3.1 The dual of a Hilbert spacep. 600
10.4 Weak convergencep. 605
10.4.1 Convexityp. 611
A The Euclidean algorithmp. 617
A.0.1 Computing multiplicative inverses in Z pp. 618
A.0.2 Related resultsp. 619
B Permutationsp. 621
C Polynomialsp. 625
C.1 Rings of Polynomialsp. 625
C.2 Polynomial functionsp. 630
C.2.1 Factorization of polynomialsp. 632
D Summary of analysis in Rp. 633
D.0.1 Convergencep. 633
D.0.2 Completeness of Rp. 634
D.0.3 Open and closed setsp. 635
D.0.4 Continuous functionsp. 636
Bibliographyp. 637
Indexp. 641