Cover image for Robust power system frequency control
Title:
Robust power system frequency control
Personal Author:
Series:
Power electronics and power systems
Publication Information:
New York : Springer, 2009
Physical Description:
xiv, 218 p. : ill. ; 24 cm.
ISBN:
9780387848778

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010196862 TK1007 B48 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

This text emphasizes the physical and engineering aspects of the power system frequency control design problem while providing a conceptual understanding of frequency regulation and application of robust control techniques.


Table of Contents

1 Power System Control: An Overviewp. 1
1.1 A Brief Historical Reviewp. 1
1.2 Instability Phenomenap. 2
1.3 Controls Configurationp. 5
1.4 Controls at Different Operating Statesp. 6
1.5 Dynamics and Control Timescalesp. 7
1.6 Power System Frequency Controlp. 8
1.6.1 Load-Frequency Controlp. 8
1.6.2 Why Robust Power System Frequency Control?p. 9
1.7 Summaryp. 11
Referencesp. 11
2 Real Power Compensation and Frequency Controlp. 15
2.1 Fundamental Frequency Control Loopsp. 15
2.2 Frequency Response Modellingp. 16
2.3 Frequency Control in an Interconnected Power Systemp. 20
2.4 LFC Participation Factorp. 25
2.5 Frequency Operating Standardsp. 26
2.6 A Literature Review on LFC Synthesis/Analysisp. 28
2.7 Summaryp. 30
Referencesp. 31
3 Frequency Response Characteristics and Dynamic Performancep. 39
3.1 Frequency Response Analysisp. 39
3.2 State-Space Dynamic Modelp. 43
3.3 Frequency Control in a Deregulated Environmentp. 44
3.4 LFC Dynamics and Bilateral Contactsp. 47
3.4.1 Modellingp. 47
3.4.2 Simulation Examplep. 50
3.5 Physical Constraintsp. 55
3.5.1 Generation Rate and Dead Bandp. 55
3.5.2 Time Delaysp. 56
3.5.3 Uncertaintiesp. 58
3.6 Summaryp. 60
Referencesp. 60
4 PI-Based Frequency Control Designp. 63
4.1 H&infinity;-SOF Control Designp. 64
4.1.1 Static Output Feedback Controlp. 64
4.1.2 H&infinity;-SOFp. 64
4.2 Problem Formulation and Control Frameworkp. 66
4.2.1 Transformation from PI to SOF Control Problemp. 66
4.2.2 Control Frameworkp. 67
4.3 Iterative LMI Algorithmp. 69
4.3.1 Developed Algorithmp. 70
4.3.2 Weights Selectionp. 71
4.4 Application Examplep. 73
4.4.1 Case Studyp. 73
4.4.2 Simulation Resultsp. 75
4.5 Using a Modified Controlled Output Vectorp. 77
4.6 Considering Bilateral Contractsp. 81
4.7 Summaryp. 81
Referencesp. 82
5 Frequency Regulation with Time Delaysp. 85
5.1 Preliminariesp. 86
5.1.1 H&infinity; Control for Time-Delay Systemsp. 86
5.1.2 LFC with Time Delaysp. 87
5.2 Proposed Control Strategyp. 89
5.2.1 Problem Formulationp. 89
5.2.2 H&infinity;-SOF-Based LFC Designp. 90
5.2.3 Application to a Three-Control Areap. 92
5.3 Real-Time Laboratory Experimentp. 92
5.3.1 Analog Power System Simulatorp. 92
5.3.2 Configuration of Study Systemp. 93
5.3.3 H&infinity;-SOF-Based PI Controllerp. 96
5.4 Simulation Resultsp. 96
5.5 Summaryp. 99
Referencesp. 100
6 Multi-Objective Control-Based Frequency Regulationp. 103
6.1 Mixed H2/H&infinity;: Technical Backgroundp. 104
6.2 Proposed Control Strategyp. 105
6.2.1 Multi-Objective PI-Based LFC Designp. 106
6.2.2 Modelling of Uncertaintiesp. 108
6.2.3 Developed ILMIp. 108
6.2.4 Weights Selection (¿i, Wi)p. 110
6.2.5 Application to Three-Control Areap. 110
6.3 Discussionp. 110
6.4 Real-Time Laboratory Experimentsp. 113
6.4.1 Configuration of Study Systemp. 113
6.4.2 PI Controllerp. 114
6.5 Simulation Resultsp. 117
6.6 Summaryp. 121
Referencesp. 121
7 Agent-Based Robust Frequency Regulationp. 123
7.1 Frequency Response Analysisp. 124
7.1.1 Frequency Response Modelp. 124
7.1.2 Total Power Imbalance Estimationp. 125
7.2 Proposed Control Strategyp. 126
7.2.1 Overall LFC Frameworkp. 126
7.2.2 Computing of Participation Factorsp. 127
7.2.3 Structure of Two-Agent Systemp. 129
7.3 Tuning of PI Controllerp. 130
7.4 Real-Time Implementationp. 132
7.4.1 Configuration of Study Systemp. 132
7.4.2 PI Parametersp. 133
7.4.3 Implementationp. 133
7.5 Laboratory Resultsp. 135
7.6 Remarksp. 136
7.7 Summaryp. 138
Referencesp. 139
8 Application of Structured Singular Values in LFC Designp. 141
8.1 Sequential Decentralized LFC Designp. 141
8.1.1 Model Descriptionp. 142
8.1.2 Synthesis Procedurep. 143
8.1.3 Synthesis Stepsp. 147
8.1.4 Application Example 1p. 148
8.1.5 Simulation Resultsp. 152
8.2 A Decentralized LFC Designp. 154
8.2.1 Synthesis Methodologyp. 155
8.2.2 Application Example 2p. 157
8.2.3 Simulation Resultsp. 161
8.3 Summaryp. 161
Referencesp. 163
9 Frequency Control in Emergency Conditionsp. 165
9.1 Frequency Response Modelp. 165
9.1.1 Modellingp. 166
9.1.2 Considering of Emergency Control/Protection Dynamicsp. 168
9.1.3 Simulation Examplep. 169
9.2 Under-Frequency Load Sheddingp. 174
9.2.1 Why Load Shedding?p. 174
9.2.2 A Brief Literature Review on UFLSp. 175
9.3 UFLS in Multi-Area Power Systemsp. 177
9.3.1 On Targeted Load Sheddingp. 177
9.3.2 A Centralized UFLS Schemep. 179
9.3.3 Targeted Load Shedding Using Frequency Rate Changep. 180
9.3.4 Simulation Examplep. 183
9.4 Remarksp. 186
9.5 Summaryp. 187
Referencesp. 187
10 Renewable Energy Options and Frequency Regulationp. 191
10.1 RESs and New Challengesp. 191
10.2 Impact on Frequency Regulation: A Simulation Studyp. 194
10.3 Considering RESs Effect in LFC Modelp. 198
10.3.1 LFC Model with RESsp. 199
10.3.2 Required Supplementary LFC Reservep. 200
10.3.3 RESs and Frequency Performance Standardsp. 201
10.4 A Survey on Recent Studiesp. 203
10.5 Summaryp. 206
Referencesp. 206
Appendix A

p. 209

Appendix B

p. 211

Indexp. 215