Cover image for Computational fluid dynamics for engineers
Title:
Computational fluid dynamics for engineers
Publication Information:
Cambridge ; New York : Cambridge University Press, 2012
Physical Description:
xi, 189 p. : ill. ; 25 cm.
ISBN:
9781107018952

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010242559 TA357 C587 2012 Open Access Book Book
Searching...
Searching...
30000010297776 TA357 C587 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.


Author Notes

Bengt Andersson is a Professor in Chemical Engineering at Chalmers University, Sweden.
Ronnie Andersson is an Assistant Professor in Chemical Engineering at Chalmers University, Sweden.
Love Hkansson works as Consultant at Engineering Data Resources - EDR in Oslo, Norway.
Mikael Mortensen is working with fluid dynamics at the Norwegian Defence Research Establishment in Lillehammer, Norway.
Rahman Sudiyo is a Lecturer at the University of Gadjah Mada in Yogyakarta, Indonesia.
Berend van Wachem is a Reader at Imperial College London in the UK.


Table of Contents

Prefacep. ix
1 Introductionp. 1
1.1 Modelling in engineeringp. 1
1.2 CFD simulationsp. 1
1.3 Applications in engineeringp. 2
1.4 Flowp. 2
1.4.1 Laminar flowp. 3
1.4.2 Turbulent flowp. 3
1.4.3 Single-phase flowp. 4
1.4.4 Multiphase flowp. 4
1.5 CFD programsp. 4
2 Modellingp. 8
2.1 Mass, heat and momentum balancesp. 9
2.1.1 Viscosity, diffusion and heat conductionp. 9
2.2 The equation of continuityp. 12
2.3 The equation of motionp. 14
2.4 Energy transportp. 16
2.4.1 The balance for kinetic energyp. 16
2.4.2 The balance for thermal energyp. 18
2.5 The balance for speciesp. 18
2.6 Boundary conditionsp. 18
2.6.1 Inlet and outlet boundariesp. 19
2.6.2 Wall boundariesp. 19
2.6.3 Symmetry and axis boundary conditionsp. 20
2.6.4 Initial conditionsp. 20
2.6.5 Domain settingsp. 21
2.7 Physical propertiesp. 21
2.7.1 The equation of statep. 22
2.7.2 Viscosityp. 22
3 Numerical aspects of CFDp. 24
3.1 Introductionp. 24
3.2 Numerical methods for CFDp. 25
3.2.1 The finite-volume methodp. 25
3.2.2 Geometrical definitionsp. 26
3.3 Cell balancingp. 26
3.3.1 The convective termp. 27
3.3.2 The diffusion termp. 28
3.3.3 The source termp. 28
3.4 Example 1 - ID mass diffusion in a flowing gasp. 29
3.4.1 Solutionp. 29
3.4.2 Concluding remarksp. 33
3.5 The Gauss-Seidel algorithmp. 33
3.6 Example 2 - Gauss-Seidelp. 34
3.7 Measures of convergencep. 37
3.8 Discretization schemesp. 38
3.8.1 Example 3 - increased velocityp. 39
3.8.2 Boundedness and transportivenessp. 40
3.8.3 The upwind schemesp. 40
3.8.4 Taylor expansionsp. 42
3.8.5 Accuracyp. 43
3.8.6 The hybrid schemep. 44
3.8.7 The power-law schemep. 45
3.8.8 The Quick schemep. 46
3.8.9 More advanced discretization schemesp. 46
3.9 Solving the velocity fieldp. 47
3.9.1 Under-relaxationp. 49
3.10 Multigridp. 50
3.11 Unsteady flowsp. 51
3.11.1 Example 4 - time-dependent simulationp. 52
3.11.2 Conclusions on the different time discretization methodsp. 57
3.12 Meshingp. 58
3.12.1 Mesh generationp. 58
3.12.2 Adaptationp. 60
3.12.3 Numerical diffusionp. 60
3.13 Summaryp. 61
4 Turbulent-flow modellingp. 62
4.1 The physics of fluid turbulencep. 62
4.1.1 Characteristic features of turbulent flowsp. 63
4.1.2 Statistical methodsp. 66
4.1.3 Flow stabilityp. 69
4.1.4 The Kolmogorov hypothesesp. 70
4.1.5 The energy cascadep. 72
4.1.6 Sources of turbulencep. 74
4.1.7 The turbulent energy spectrump. 75
4.2 Turbulence modellingp. 76
4.2.1 Direct numerical simulationp. 79
4.2.2 Large-eddy simulationp. 79
4.2.3 Reynolds decompositionp. 81
4.2.4 Models based on the turbulent viscosity hypothesisp. 86
4.2.5 Reynolds stress models (RSMs)p. 96
4.2.6 Advanced turbulence modellingp. 99
4.2.7 Comparisons of various turbulence modelsp. 99
4.3 Near-wall modellingp. 99
4.3.1 Turbulent boundary layersp. 101
4.3.2 Wall functionsp. 104
4.3.3 Improved near-wall-modellingp. 107
4.3.4 Comparison of three near-wall modelling approachesp. 109
4.4 Inlet and outlet boundary conditionsp. 110
4.5 Summaryp. 112
5 Turbulent mixing and chemical reactionsp. 113
5.1 Introductionp. 114
5.2 Problem descriptionp. 115
5.3 The nature of turbulent mixingp. 117
5.4 Mixing of a conserved scalarp. 119
5.4.1 Mixing timescalesp. 119
5.4.2 Probability density functionsp. 120
5.4.3 Modelling of turbulent mixingp. 124
5.5 Modelling of chemical reactionsp. 130
5.5.1 Da"1p. 130
5.5.2 Da"1p. 131
5.5.3 Da1p. 138
5.6 Non-PDF modelsp. 141
5.7 Summaryp. 142
6 Multiphase flow modellingp. 143
6.1 Introductionp. 144
6.1.1 Characterization of multiphase flowsp. 144
6.1.2 Coupling between a continuous phase and a dispersed phasep. 146
6.2 Forces on dispersed particlesp. 147
6.3 Computational modelsp. 149
6.3.1 Choosing a multiphase modelp. 150
6.3.2 Direct numerical simulationsp. 151
6.3.3 Lagrangian particle simulations, the point-particle approachp. 152
6.3.4 Euler-Euler modelsp. 155
6.3.5 The mixture modelp. 156
6.3.6 Models for stratified fluid-fluid flowsp. 158
6.3.7 Models for flows in porous mediap. 160
6.4 Closure modelsp. 161
6.4.1 Interphase dragp. 161
6.4.2 Particle interactionsp. 163
6.4.3 Heat and mass transferp. 168
6.5 Boundaries and boundary conditionsp. 169
6.5.1 Lagrangian dispersed phasep. 169
6.5.2 Eulerian dispersed phasep. 170
6.6 Summaryp. 171
6.6.1 Guidelines for selecting a multiphase modelp. 172
7 Best-practice guidelinesp. 174
7.1 Application uncertaintyp. 175
7.1.1 Geometry and grid designp. 175
7.2 Numerical uncertaintyp. 175
7.2.1 Convergencep. 175
7.2.2 Enhancing convergencep. 176
7.2.3 Numerical errorsp. 176
7.2.4 Temporal discretizationp. 177
7.3 Turbulence modellingp. 177
7.3.1 Boundary conditionsp. 177
7.4 Reactionsp. 178
7.5 Multiphase modellingp. 178
7.6 Sensitivity analysisp. 180
7.7 Verification, validation and calibrationp. 180
Appendixp. 181
Referencesp. 185
Indexp. 186