Cover image for Optimal modified continuous Galerkin CFD
Title:
Optimal modified continuous Galerkin CFD
Personal Author:
Publication Information:
Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014
Physical Description:
xxiv, 550 pages : illustrations ; 24 cm.
ISBN:
9781119940494
Abstract:
"This book promotes the use of optimal modified continuous Galerkin weak form theory to generate discrete approximate solutions to incompressible-thermal Navier-Stokes equations"--provided by publisher

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010336651 TA357 B354 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

Covers the theory and applications of using weak form theory in incompressible fluid-thermal sciences

Giving you a solid foundation on the Galerkin finite-element method (FEM), this book promotes the use of optimal modified continuous Galerkin weak form theory to generate discrete approximate solutions to incompressible-thermal Navier-Stokes equations. The book covers the topic comprehensively by introducing formulations, theory and implementation of FEM and various flow formulations.

The author first introduces concepts, terminology and methodology related to the topic before covering topics including aerodynamics; the Navier-Stokes Equations; vector field theory implementations and large eddy simulation formulations.

Introduces and addresses many different flow models (Navier-Stokes, full-potential, potential, compressible/incompressible) from a unified perspective Focuses on Galerkin methods for CFD beneficial for engineering graduate students and engineering professionals Accompanied by a website with sample applications of the algorithms and example problems and solutions

This approach is useful for graduate students in various engineering fields and as well as professional engineers.


Author Notes

A.J. Baker is Professor Emeritus, Engineering Science and Mechanics, The University of Tennessee, USA. He is an elected Fellow of the International Association for Computational Mechanics (IACM) and the US Association for Computational Mechanics (USACM) and an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA).


Table of Contents

Prefacep. xiii
About the Authorp. xvii
Notationsp. xix
1 Introductionp. 1
1.1 About This Bookp. 1
1.2 The Navier-Stokes Conservation Principles Systemp. 2
1.3 Navier-Stokes PDE System Manipulationsp. 5
1.4 Weak Form Overviewp. 7
1.5 A Brief History of Finite Element CFDp. 9
1.6 A Brief Summaryp. 11
Referencesp. 12
2 Concepts, terminology, methodologyp. 15
2.1 Overviewp. 15
2.2 Steady DE Weak Form Completionp. 16
2.3 Steady DE GWS N Discrete FE Implementationp. 19
2.4 PDE Solutions, Classical Conceptsp. 27
2.5 The Sturm-Liouville Equation, Orthogonality, Completenessp. 30
2.6 Classical Variational Calculusp. 33
2.7 Variational Calculus, Weak Form Dualityp. 36
2.8 Quadratic Forms, Norms, Error Estimationp. 38
2.9 Theory Illustrations for Non-Smooth, Nonlinear Datap. 40
2.10 Matrix Algebra, Notationp. 44
2.11 Equation Solving, Linear Algebrap. 46
2.12 Krylov Sparse Matrix Solver Methodologyp. 53
2.13 Summaryp. 54
Exercisesp. 54
Referencesp. 56
3 Aerodynamics I: Potential flow, GWS h theory exposition, transonic flow mPDE shock capturingp. 59
3.1 Aerodynamics, Weak Interactionp. 59
3.2 Navier-Stokes Manipulations for Aerodynamicsp. 60
3.3 Steady Potential Flow GWSp. 62
3.4 Accuracy, Convergence, Mathematical Preliminariesp. 66
3.5 Accuracy, Galerkin Weak Form Optimalityp. 68
3.6 Accuracy, GWS h Error Boundp. 71
3.7 Accuracy, GWS h Asymptotic Convergencep. 73
3.8 GWS h Natural Coordinate FE Basis Matricesp. 76
3.9 GWS h Tensor Product FE Basis Matricesp. 82
3.10 GWS h Comparison with Laplacian FD and FV Stencilsp. 87
3.11 Post-Processing Pressure Distributionsp. 90
3.12 Transonic Potential Flow, Shock Capturingp. 92
3.13 Summaryp. 96
Exercisesp. 98
Referencesp. 99
4 Aerodynamics II: boundary layers, turbulence closure modeling, parabolic Navier-Stokesp. 101
4.1 Aerodynamics, Weak Interaction Reprisep. 101
4.2 Navier-Stokes PDE System Reynolds Orderedp. 102
4.3 GWS h , n = 2 Laminar-Thermal Boundary Layerp. 104
4.4 GWS h + ¿TS BL Matrix Iteration Algorithmp. 108
4.5 Accuracy, Convergence, Optimal Mesh Solutionsp. 111
4.6 GWS h + ¿TS Solution Optimality, Data Influencep. 115
4.7 Time Averaged NS, Turbulent BL Formulationp. 116
4.8 Turbulent BL GWS h + ¿TS, Accuracy, Convergencep. 120
4.9 GWS h +¿TS BL Algorithm, TKE Closure Modelsp. 123
4.10 The Parabolic Navier-Stokes PDE Systemp. 129
4.11 GWS h + ¿TS Algorithm for PNS PDE Systemp. 134
4.12 GWS h + ¿TS k=1 NC Basis PNS Algorithmp. 137
4.13 Weak Interaction PNS Algorithm Validationp. 141
4.14 Square Duct PNS Algorithm Validationp. 147
4.15 Summaryp. 148
Exercisesp. 155
Referencesp. 157
5 The Navier-Stokes Equations: theoretical fundamentals; constraint, spectral analyses, mPDE theory, optimal Galerkin weak formsp. 159
5.1 The Incompressible Navier-Stokes PDE Systemp. 159
5.2 Continuity Constraint, Exact Enforcementp. 160
5.3 Continuity Constraint, Inexact Enforcementp. 164
5.4 The CCM Pressure Projection Algorithmp. 166
5.5 Convective Transport, Phase Velocityp. 168
5.6 Convection-Diffusion, Phase Speed Characterizationp. 170
5.7 Theory for Optimal mGWS h + ¿TS Phase Accuracyp. 177
5.8 Optimally Phase Accurate mGWS h + ¿TS in n Dimensionsp. 185
5.9 Theory for Optimal mGWS h Asymptotic Convergencep. 193
5.10 The Optimal mGWS h + ¿TS k = 1 Basis NS Algorithmp. 201
5.11 Summaryp. 203
Exercisesp. 206
Referencesp. 208
6 Vector Field Theory Implementations: vorticity-streamfunction, vorticity-velocity formulationsp. 211
6.1 Vector Field Theory NS PDE Manipulationsp. 211
6.2 Vorticity-Streamfunction PDE System, n = 2p. 213
6.3 Vorticity-Streamfunction mGWS h Algorithmp. 214
6.4 Weak Form Theory Verification, GWS h /mGWS hp. 219
6.5 Vorticity-Velocity mGWS h Algorithm, n = 3p. 228
6.6 Vorticity-Velocity GWS h + ¿TS Assessments, n = 3p. 233
6.7 Summaryp. 243
Exercisesp. 246
Referencesp. 247
7 Classic State Variable Formulations: GWS/mGWS h + ¿TS algorithms for Navier-Stokes; accuracy, convergence, validation, BCs, radiation, ALE formulationp. 249
7.1 Classic Slate Variable Navier-Stokes PDE Systemp. 249
7.2 NS Classic State Variable mPDE Systemp. 251
7.3 NS Classic State Variable mGWS h + ¿TS Algorithmp. 252
7.4 NS mGWS h + ¿TS Algorithm Discrete Formationp. 254
7.5 mGWS h + ¿TS Algorithm Completionp. 258
7.6 mGWS h + ¿TS Algorithm Benchmarks, n = 2p. 260
7.7 mGWS h + ¿TS Algorithm Validations, n = 3p. 268
7.8 Flow Bifurcation, Multiple Outflow Pressure BCsp. 282
7.9 Convection/Radiation BCs in GWS h + ¿TSp. 283
7.10 Convection BCs Validationp. 288
7.11 Radiosity, GWS h Algorithmp. 295
7.12 Radiosity BC, Accuracy, Convergence, Validationp. 298
7.13 ALE Thermo-Solid-Fluid-Mass Transport Algorithmp. 302
7.14 ALE GWS h + ¿TS Algorithm LISI Validationp. 304
7.15 Summaryp. 310
Exercisesp. 317
Referencesp. 318
8 Time Averaged Navier-Stokes: mGWS h + ¿TS algorithm for RaNS, Reynolds stress tensor closure modelsp. 319
8.1 Classic State Variable RaNS PDE Systemp. 319
8.2 RaNS PDE System Turbulence Closurep. 321
8.3 RaNS State Variable mPDE Systemp. 323
8.4 RaNS mGWS h + ¿TS Algorithm Matrix Statementp. 325
8.5 RaNS mGWS h + ¿TS Algorithm, Stability, Accuracyp. 331
8.6 RaNS Algorithm BCs for Conjugate Heat Transferp. 337
8.7 RaNS Full Reynolds Stress Closure PDE Systemp. 341
8.8 RSM Closure mGWS h + ¿TS Algorithmp. 345
8.9 RSM Closure Model Validationp. 347
8.10 Geologic Borehole Conjugate Heal Transferp. 348
8.11 Summaryp. 358
Exercisesp. 363
Referencesp. 364
9 Space Filtered Navier-Stokes: GWS h /GWS h + ¿TS for space filtered Navier-Stokes, modeled, analytical closurep. 365
9.1 Classic State Variable LES PDE Systemp. 365
9.2 Space Filtered NS PDE Systemp. 366
9.3 SGS Tensor Closure Modeling for LESp. 368
9.4 Rational LES Theory Predictionsp. 371
9.5 RLES Unresolved Scale SFS Tensor Modelsp. 376
9.6 Analytical SFS Tensor/Vector Closuresp. 381
9.7 Auxiliary Problem Resolution Via Perturbation Theoryp. 383
9.8 LES Analytical Closure (arLES) Theoryp. 386
9.9 arLES Theory mGWS h + ¿TS Algorithmp. 387
9.10 arLES Theory mGWS h + ¿TS Completionp. 391
9.11 arLES Theory Implementation Diagnosticsp. 392
9.12 RLES Theory Turbulent BL Validationp. 403
9.13 Space Filtered NS PDE System on Bounded Domainsp. 409
9.14 Space Filtered NS Bounded Domain BCsp. 410
9.15 ADBC Algorithm Validation, Space Filtered DEp. 412
9.16 arLES Theory Resolved Scale BCE integralsp. 420
9.17 Turbulent Resolved Scale Velocity BC Optimal ¿ h -¿p. 423
9.18 Resolved Scale Velocity DBC Validation ∀ Rep. 430
9.19 arLES O(¿ 2 ) State Variable Bounded Domain BCsp. 430
9.20 Well-Posed arLES Theory n = 3 Validationp. 433
9.21 Well-Posed arLES Theory n = 3 Diagnosticsp. 441
9.22 Summaryp. 446
Exercisesp. 455
Referencesp. 456
10 Summary-VVUQ: verification, validation, uncertainty quantificationp. 459
10.1 Beyond Colorful Fluid Dynamicsp. 459
10.2 Observations on Computational Reliabilityp. 460
10.3 Solving the Equations Rightp. 461
10.4 Solving the Right Equationsp. 464
10.5 Solving the Right Equations Without Modelingp. 466
10.6 Solving the Right Equations Well-Posedp. 468
10.7 Well-Posed Right Equations Optimal CFDp. 471
10.8 The Right Closing Caveatp. 473
Referencesp. 474
Appendix A Well-Posed arLES Theory PICMSS Templatep. 475
Appendix B Hypersonic Parabolic Navier-Stokesp. 483
B.1 High Speed External Aerodynamicsp. 483
B.2 Compressible Navier-Stokes PDE Systemp. 484
B.3 Purabolic Compressible RaNS PDE Systemp. 488
B.4 Compressible PRaNS mPDE System Closurep. 490
B.5 Bow Shock Fitting, PRaNS State Variable ICp. 493
B.6 The PRaNS mGWS h + ¿TS Algorithmp. 496
B.7 PRaNS mGWS h -¿TS Algorithm Completionp. 501
B.8 PRaNS Algorithm IC Generationp. 505
B.9 PRaNS mGWS h + ¿TS Algorithm Validationp. 507
B.10 Hypersonic Blunt Body Shock Trajectoryp. 515
B.11 Shock Trajectory Characteristics Algorithmp. 521
B.12 Blunt Body PRaNS Algorithm Validationp. 523
B.13 Summaryp. 527
Exercisesp. 532
Referencesp. 533
Author Indexp. 535
Subject Indexp. 541