Cover image for Linear collider physics in the new millennium
Title:
Linear collider physics in the new millennium
Series:
Advanced series on directions in high energy physics ; 19
Publication Information:
New Jersey, NJ : World Scientific Pub., 2006
ISBN:
9789812389084

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010108239 QC787.L53 L56 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

The high energy electron-positron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider.


Table of Contents

G.A. Blair and D.J. MillerJohn F. Gunion and Howard E. Haber and Rick Van KootenY. SuminoJonathan L. Feng and Mihoko M. NojiriWolfgang KilianKlaus MonigJoAnne L. HewettPhilip N. BurrowsTohru TakahashiDavid Atwood and Amarjit SoniKeisuke Fujii and Michael E. Peskin
Prefacep. v
List of Contributorsp. xvii
Chapter 1 The Machine and Detectorp. 1
1 Introductionp. 1
2 The Machinep. 1
2.1 Required Energy and Luminosityp. 1
2.2 Why a Linear Collider?p. 3
2.3 The Proposed Machinesp. 7
2.4 X-ray Free Electron Laserp. 11
2.5 Electron and Positron Sourcesp. 13
2.6 Damping Ringsp. 13
2.7 Final Focusp. 14
2.8 Crossing Angle and Number of Collision Pointsp. 15
2.9 Measuring Beam Energy and Luminosity Spectrump. 16
2.10 The [gamma gamma], [gamma]e and e[superscript -]e[superscript -] Optionsp. 18
2.11 The GigaZ Optionp. 19
3 Machine Detector Interfacep. 20
3.1 Backgroundsp. 20
3.2 Mask Regionp. 23
4 Requirements for the Detectorsp. 24
4.1 Energy Flowp. 26
4.2 Trackingp. 27
4.2.1 Momentum Vector Measurementp. 27
4.2.2 Vertexing Systemsp. 31
4.3 Calorimetryp. 33
4.3.1 Electromagnetic Calorimeterp. 34
4.3.2 Hadronic Calorimeterp. 35
Referencesp. 36
Chapter 2 Higgs Physics at the Linear Colliderp. 41
1 Introductionp. 41
2 Expectations for Electroweak Symmetry Breakingp. 44
3 The Standard Model Higgs Boson-Theoryp. 50
3.1 Standard Model Higgs Boson Decay Modesp. 50
3.2 Standard Model Higgs Boson Production at the LCp. 52
4 SM Higgs Searches before the Linear Colliderp. 54
4.1 Direct Search Limits from LEPp. 54
4.2 Implications of Precision Electroweak Measurementsp. 54
4.3 Expectations for Tevatron Searchesp. 56
4.4 Expectations for LHC Searchesp. 58
5 Higgs Bosons in Low-energy Supersymmetryp. 60
5.1 MSSM Higgs Sector at Tree Levelp. 63
5.2 The Radiatively Corrected MSSM Higgs Sectorp. 65
5.3 MSSM Higgs Boson Decay Modesp. 72
5.4 MSSM Higgs Boson Production at the LCp. 73
6 MSSM Higgs Boson Searches before the LCp. 75
6.1 Direct Search Limits from LEPp. 75
6.2 MSSM Higgs Searches at the Tevatronp. 76
6.3 MSSM Higgs Searches at the LHCp. 77
7 Non-exotic Extended Higgs Sectorsp. 80
7.1 The Decoupling Limitp. 81
7.2 Constraints from Precision Electroweak Data and LC Implicationsp. 82
7.3 Constraints on Higgs Bosons with VV Couplingp. 84
7.4 Detection of Non-exotic Extended Higgs Sector Scalars at the Tevatron and LHCp. 85
7.5 LC Production Mechanisms for Non-exotic Extended Higgs Sector Scalarsp. 86
8 Exotic Higgs Sectors and Other Possibilitiesp. 89
8.1 A Triplet Higgs Sectorp. 90
8.2 Pseudo Nambu Goldstone Bosonsp. 91
9 LC Measurements of Higgs Boson Propertiesp. 91
9.1 Massp. 92
9.2 Coupling Determinations - Light Higgs Bosonp. 95
9.2.1 Cross Sectionsp. 95
9.2.2 Branching Ratiosp. 96
9.2.3 Radiative Production, tthp. 98
9.2.4 Self-Couplingp. 99
9.2.5 Implications for the MSSM Higgs Sectorp. 101
9.3 Coupling Determinations - Intermediate Mass Higgs Bosonp. 103
9.3.1 Cross Sectionsp. 103
9.3.2 Branching Ratiosp. 104
9.4 Coupling Determinations - Heavy Higgs Bosonp. 105
9.4.1 Cross Sectionsp. 105
9.4.2 Branching Ratiosp. 105
9.5 Summary of Couplingsp. 106
9.6 Total Widthp. 107
9.7 Quantum Numbersp. 108
9.8 Precision Studies of Non-SM-like Higgs Bosonsp. 111
10 The Giga-Z Option - Implications for Higgs Physicsp. 113
10.1 Giga-Z and the MSSMp. 113
10.2 Giga-Z and Non-exotic Extended Higgs Sectorsp. 115
11 The [gamma gamma] Collider Optionp. 115
12 Concluding Remarksp. 121
Acknowledgmentsp. 121
Referencesp. 122
Chapter 3 Top Quark Physicsp. 135
1 Introductionp. 135
2 Top Quark Threshold Regionp. 136
2.1 Physics Motivations and Goalsp. 137
2.1.1 Top Mass Determinationp. 137
2.1.2 Testing Dynamics of tt Resonancesp. 137
2.1.3 Examinations of Various Top Quark Interactionsp. 138
2.2 Top Quark Massp. 138
2.2.1 How to Determine the Massp. 138
2.2.2 Simulation Studies on Expected Precisionp. 139
2.2.3 Renormalon Problem and Renormalon Cancellationp. 140
2.2.4 Theoretical Prediction for the 1S Energy Levelp. 142
2.2.5 Physical Implicationsp. 143
2.2.6 Remaining Theoretical Uncertaintiesp. 145
2.3 Dynamics and Observablesp. 145
2.3.1 Time Evolutionp. 145
2.3.2 Production Process of Top Quarksp. 148
2.3.3 Decay of Top Quarks and Final-State Interactionsp. 155
2.4 Measurements of Top Quark Couplingsp. 162
2.4.1 Measurements of [delta subscript t], gtH, [alpha subscript s]p. 163
2.4.2 CP Violating Couplingsp. 170
2.4.3 Production and Decay Verticesp. 174
3 Open Top Regionp. 175
3.1 Short Reviewp. 175
3.1.1 Yukawa Couplingp. 175
3.1.2 Form Factorsp. 176
3.1.3 Top Mass Reconstructionp. 177
3.2 Use of Inclusive Observables in Studying Form Factorsp. 178
4 Conclusionsp. 182
Referencesp. 183
Chapter 4 Supersymmetry and the Linear Colliderp. 187
1 Introductionp. 187
2 The Minimal Supersymmetric Standard Modelp. 189
2.1 Particle Contentp. 189
2.2 Supersymmetric Matter Interactionsp. 191
2.3 Supersymmetric Gauge Interactionsp. 194
2.4 Supersymmetry-breaking Termsp. 194
2.5 Sleptonsp. 196
2.6 Charginos and Neutralinosp. 198
3 Successes and Puzzlesp. 199
3.1 Unificationp. 200
3.2 Dark Matterp. 201
3.3 Flavor Violationp. 202
3.4 CP Violationp. 204
3.5 Proton Decayp. 204
4 Modelsp. 205
4.1 Minimal Supergravityp. 207
4.2 Focus Point Supersymmetryp. 210
4.3 Superheavy Supersymmetryp. 212
4.4 Gauge Mediationp. 213
4.5 Anomaly Mediationp. 215
4.6 GUT and Planck Scale Frameworksp. 217
5 Slepton Studiesp. 218
5.1 Signal and Backgroundp. 218
5.2 Slepton Massesp. 220
5.3 Polarized Cross Sectionsp. 225
5.4 Lepton Flavor Violationp. 229
5.5 Tau Polarization from Stau Decayp. 232
6 Chargino and Neutralino Studiesp. 234
6.1 Signal and Backgroundp. 234
6.2 Masses and Polarized Cross Sectionsp. 235
6.3 CP Violationp. 238
7 Testing Supersymmetryp. 241
7.1 Verifying Supersymmetryp. 241
7.2 Super-oblique Parametersp. 243
8 Determining the Scale of Supersymmetry Breakingp. 246
9 Extrapolation to the Planck Scalep. 247
10 Connections to Cosmologyp. 248
11 Conclusionsp. 252
Acknowledgementsp. 253
Referencesp. 253
Chapter 5 Dynamical Electroweak Symmetry Breakingp. 259
1 Introductionp. 259
1.1 Particle Massesp. 259
1.2 Exponentialsp. 261
1.3 Higgs or No Higgs?p. 262
1.4 Models of Dynamical Symmetry Breakingp. 263
2 Effective Theories of Electroweak Interactionsp. 264
2.1 The Bottom-up Approachp. 264
2.2 Anomalous Couplingsp. 269
2.3 Custodial Symmetryp. 270
3 Goldstone Boson Scatteringp. 271
3.1 Quasielastic Scattering at Leading Orderp. 272
3.2 Custodial Symmetry Relationsp. 272
3.3 Next-to-leading Order Contributionsp. 273
3.4 Unitarity Constraintsp. 274
3.5 Resonances and New Particlesp. 276
4 Measuring Higgs Sector Parameters at a Linear Colliderp. 279
4.1 Precision Observablesp. 279
4.2 Triple Gauge Couplingsp. 282
4.3 W and Z Scattering Amplitudesp. 284
5 Conclusionsp. 287
Referencesp. 288
Chapter 6 Physics of Electroweak Gauge Bosonsp. 291
1 Introductionp. 291
2 Production of Gauge Bosonsp. 294
3 Properties of Gauge Bosonsp. 296
3.1 Standard Model Predictionsp. 296
3.2 Status at Present Collidersp. 299
3.3 Prospects for the Linear Colliderp. 301
3.4 Interpretation of the Precision Measurementsp. 306
4 Measurements of the CKM Matrixp. 308
5 Interactions amongst Gauge Bosonsp. 312
5.1 Experimental Proceduresp. 314
5.2 Results at LEP and the Tevatronp. 318
5.3 Expectation from the Linear Colliderp. 319
6 Strong Electroweak Symmetry Breakingp. 321
7 Conclusionsp. 327
Referencesp. 328
Chapter 7 New Physics at the TeV Scale and Beyondp. 331
1 Introductionp. 331
2 Contact Interactions and Compositenessp. 334
3 Extended Gauge Sectorsp. 338
3.1 Z' Discovery Limits and Identificationp. 340
3.2 W' Discovery Limits and Identificationp. 344
4 Extra Spatial Dimensionsp. 347
4.1 Large Extra Dimensionsp. 348
4.2 TeV-scale Extra Dimensionsp. 356
4.3 Warped Extra Dimensions with Localized Gravityp. 363
5 Direct Production of New Particlesp. 368
5.1 New Leptonsp. 369
5.2 Leptoquarksp. 370
6 Unconventional Theories and Possible Surprisesp. 372
6.1 String Resonancesp. 373
6.2 Non-Commutative Field Theoriesp. 374
7 Conclusionsp. 376
Referencesp. 377
Chapter 8 QCDp. 383
1 Introductionp. 383
1.1 Hadronic Final Statesp. 383
1.2 Quantum Chromodynamicsp. 385
1.3 QCD and the Linear Colliderp. 386
2 Event Selectionp. 386
2.1 The Problemp. 386
2.2 Initial State Radiation and Beamstrahlungp. 387
2.3 Selection Cutsp. 387
3 Precise Measurement of [alpha subscript s]p. 388
3.1 Introductionp. 388
3.2 Current Statusp. 389
3.3 Measurement of [alpha subscript s] at the Linear Colliderp. 389
3.3.1 Event Shape Observablesp. 390
3.3.2 The tt Systemp. 394
3.3.3 A High-luminosity Run at the Z[superscript 0] Resonancep. 396
4 Q[superscript 2] Evolution of [alpha subscript s]p. 396
5 QCD Studies of ttg Eventsp. 398
5.1 Soft Gluon Radiation in ttg Eventsp. 398
5.2 Anomalous Chromomagnetic Top Quark Couplingsp. 398
6 Symmetry Tests Using Beam Polarisationp. 400
7 Further Important Topicsp. 402
7.1 Casimir Factor Analysisp. 402
7.2 Charged Particle Multiplicityp. 403
7.3 Colour Reconnection Effectsp. 404
7.4 Hadronisation Studies and Renormalon Physicsp. 404
7.5 Jet Properties and Detector Designp. 405
8 Summary and Conclusionsp. 406
Acknowledgementsp. 406
Referencesp. 406
Chapter 9 Gamma-Gamma and Other Optionsp. 409
1 Introductionp. 409
2 Luminosityp. 410
2.1 [gamma gamma] Colliderp. 410
2.2 e[gamma] Colliderp. 414
2.3 e[superscript -]e[superscript -] Colliderp. 416
2.4 Summary of the Luminositiesp. 417
3 Higgs Boson in [gamma gamma] Interactionp. 417
3.1 Two Photon Decay Width of the Light Higgs Bosonsp. 419
3.2 Heavy Higgs Bosonsp. 420
3.3 Measurement of CP Nature of the Higgs Bosonp. 421
4 Supersymmetryp. 422
4.1 Sfermion and Chargino Production by [gamma gamma] Collisionsp. 422
4.2 Selectron in the e[gamma] Collisionsp. 423
4.3 Selectron in e[superscript -]e[superscript -] Collisionsp. 424
5 Precise Measurement of Standard Model Particlesp. 426
5.1 Anomalous Coupling of the W Bosonsp. 426
5.2 Top Quarks in the [gamma gamma] Interactionp. 428
5.3 Precise Determination of Weinberg Angle by e[superscript -]e[superscript -] Interactionp. 429
5.4 Search for the Extra-Dimensionsp. 430
6 Other Experimental Issuesp. 431
6.1 Hadronic Cross Sectionp. 431
6.2 Luminosity Measurementp. 432
7 Summaryp. 434
Referencesp. 435
Chapter 10 CP Violation at the Linear Colliderp. 437
1 Introductionp. 437
2 Single Top Polarimetryp. 438
3 Top Pair Polarimetryp. 440
3.1 Constraints on Top Dipole Momentsp. 446
4 Three Particle Final Statesp. 447
4.1 Tree Level e[superscript +]e[superscript -] to ttH and e[superscript +]e[superscript -] to ttZp. 447
4.2 CP Asymmetries in e[superscript +]e[superscript -] to Zh with Subsequent Higgs Decay h to ttp. 455
5 Some Other Topics, in Briefp. 458
5.1 Threshold Studies of e[superscript +]e[superscript -] to ttp. 458
5.2 e[superscript +]e[superscript -] to ttgp. 458
5.3 e[superscript +]e[superscript -] to ttv[subscript e]v[subscript e]p. 458
Acknowledgmentsp. 459
Referencesp. 459
Chapter 11 Overall Perspectivep. 463
1 Grand View of Particle Physicsp. 463
2 Highlights of the LC Physics Programsp. 465
2.1 The Higgs Bosonp. 465
2.2 Supersymmetryp. 467
2.3 The Top Quark and the W Bosonp. 468
2.4 Z[superscript 0]'s and Other 4-fermion Interactionsp. 469
3 Relation of the ILC to the LHCp. 470
4 Experimentation at the ILCp. 473
5 Benchmark Processes for Evaluating the ILC Detectorsp. 476
5.1 e[superscript +]e[superscript -] to Zhp. 477
5.2 e[superscript +]e[superscript -] to Zhhp. 479
5.3 e[superscript +]e[superscript -] to tthp. 479
5.4 e[superscript +]e[superscript -] to ttp. 480
5.5 e[superscript +]e[superscript -] to e[superscript + subscript R]e[superscript - subscript R], [mu superscript + subscript R mu superscript - subscript R]p. 481
5.6 e[superscript +]e[superscript -] to X[superscript + subscript 1]X[superscript - subscript 1]p. 483
5.7 e[superscript +]e[superscript -] to [tau superscript + subscript 1 tau superscript + subscript 1]p. 484
5.8 e[superscript +]e[superscript -] to X[superscript 0 subscript 1]X[superscript 0 subscript 1] (GMSB)p. 485
6 Choice of the LC Energy and Luminosityp. 486
7 Conclusionsp. 488
Acknowledgementsp. 489
Referencesp. 489
Indexp. 491