Cover image for Mathematical methods for physical and analytical chemistry
Title:
Mathematical methods for physical and analytical chemistry
Personal Author:
Publication Information:
Hoboken, NJ. : Wiley, c2011.
Physical Description:
xix, 382 p. : ill. ; 24 cm.
ISBN:
9780470473542
Abstract:
"Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations"-- Provided by publisher.

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010281234 QC20 G66 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical knowledge they need to understand the analytical and physical chemistry professional literature.


Author Notes

David Z. Goodson, Associate Professor of Chemistry at the University, of Massachusetts Dartmouth, has a BA in chemistry from Pomona College and a PhD in chemical physics from Harvard University. An interdisciplinary scientist, he is author of numerous articles on a wide range of topics including quantum chemistry, molecular spectroscopy, reaction rate theory, atomic physics, and applied mathematics.


Table of Contents

Prefacep. xiii
List of Examplesp. xv
Greek Alphabetp. xix
Part I Calculus
1 Functions: General Propertiesp. 3
1.1 Mappingsp. 3
1.2 Differentials and Derivativesp. 4
1.3 Partial Derivativesp. 7
1.4 Integralsp. 9
1.5 Critical Pointsp. 14
2 Functions: Examplesp. 19
2.1 Algebraic Functionsp. 19
2.2 Transcendental Functionsp. 21
2.2.1 Logarithm and Exponentialp. 21
2.2.2 Circular Functionsp. 24
2.2.3 Gamma and Beta Functionsp. 26
2.3 Functionalsp. 31
3 Coordinate Systemsp. 33
3.1 Points in Spacep. 33
3.2 Coordinate Systems for Moleculesp. 35
3.3 Abstract Coordinatesp. 37
3.4 Constraintsp. 39
3.4.1 Degrees of Freedomp. 39
3.4.2 Constrained Extrema*p. 40
3.5 Differential Operators in Polar Coordinatesp. 43
4 Integrationp. 47
4.1 Change of Variables in Integrandsp. 47
4.1.1 Change of Variable: Examplesp. 47
4.1.2 Jacobian Determinantp. 49
4.2 Gaussian Integralsp. 51
4.3 Improper Integralsp. 53
4.4 Dirac Delta Functionp. 56
4.5 Line Integralsp. 57
5 Numerical Methodsp. 61
5.1 Interpolationp. 61
5.2 Numerical Differentiationp. 63
5.3 Numerical Integrationp. 65
5.4 Random Numbersp. 70
5.5 Root Findingp. 71
5.6 Minimization*p. 74
6 Complex Numbersp. 79
6.1 Complex Arithmeticp. 79
6.2 Fundamental Theorem of Algebrap. 81
6.3 The Argand Diagramp. 83
6.4 Functions of a Complex Variable*p. 87
6.5 Branch Cuts*p. 89
7 Extrapolationp. 93
7.1 Taylor Seriesp. 93
7.2 Partial Sumsp. 97
7.3 Applications of Taylor Seriesp. 99
7.4 Convergencep. 102
7.5 Summation Approximants*p. 104
Part II Statistics
8 Estimationp. 111
8.1 Error and Estimationp. 111
8.2 Probability Distributionsp. 113
8.2.1 Probability Distribution Functionsp. 113
8.2.2 The Normal Distributionp. 115
8.2.3 The Poisson Distributionp. 119
8.2.4 The Binomial Distribution*p. 120
8.2.5 The Boltzmann Distribution*p. 121
8.3 Outliersp. 124
8.4 Robust Estimationp. 126
9 Analysis of Significancep. 131
9.1 Confidence Intervalsp. 131
9.2 Propagation of Errorp. 136
9.3 Monte Carlo Simulation of Errorp. 139
9.4 Significance of Differencep. 140
9.5 Distribution Testing*p. 144
10 Fittingp. 151
10.1 Method of Least Squaresp. 151
10.1.1 Polynomial Fittingp. 151
10.1.2 Weighted Least Squaresp. 154
10.1.3 Generalizations of the Least-Squares Method*p. 155
10.2 Fitting with Error in Both Variablesp. 157
10.2.1 Uncontrolled Error in xp. 157
10.2.2 Controlled Error in xp. 160
10.3 Nonlinear Fittingp. 162
11 Quality of Fitp. 165
11.1 Confidence Intervals for Parametersp. 165
11.2 Confidence Band for a Calibration Linep. 168
11.3 Outliers and Leverage Pointsp. 171
11.4 Robust Fitting*p. 173
11.5 Model Testingp. 176
12 Experiment Designp. 181
12.1 Risk Assessmentp. 181
12.2 Randomizationp. 185
12.3 Multiple Comparisonsp. 188
12.3.1 ANOVA*p. 189
12.3.2 Post-Hoc Tests*p. 191
12.4 Optimization*p. 195
Part III Differential Equations
13 Examples of Differential Equationsp. 203
13.1 Chemical Reaction Ratesp. 203
13.2 Classical Mechanicsp. 205
13.2.1 Newtonian Mechanicsp. 205
13.2.2 Lagrangian and Hamiltonian Mechanicsp. 208
13.2.3 Angular Momentump. 211
13.3 Differentials in Thermodynamicsp. 212
13.4 Transport Equationsp. 213
14 Solving Differential Equations, Ip. 217
14.1 Basic Conceptsp. 217
14.2 The Superposition Principlep. 220
14.3 First-Order ODE'sp. 222
14.4 Higher-Order ODE'sp. 225
14.5 Partial Differential Equationsp. 228
15 Solving Differential Equations, IIp. 231
15.1 Numerical Solutionp. 231
15.1.1 Basic Algorithmsp. 231
15.1.2 The Leapfrog Method*p. 234
15.1.3 Systems of Differential Equationsp. 235
15.2 Chemical Reaction Mechanismsp. 236
15.3 Approximation Methodsp. 239
15.3.1 Taylor Series*p. 239
15.3.2 Perturbation Theory*p. 242
Part IV Linear Algebra
16 Vector Spacesp. 247
16.1 Cartesian Coordinate Vectorsp. 247
16.2 Setsp. 248
16.3 Groupsp. 249
16.4 Vector Spacesp. 251
16.5 Functions as Vectorsp. 252
16.6 Hilbert Spacesp. 253
16.7 Basis Setsp. 256
17 Spaces of Functionsp. 261
17.1 Orthogonal Polynomialsp. 261
17.2 Function Resolutionp. 267
17.3 Fourier Seriesp. 270
17.4 Spherical Harmonicsp. 275
18 Matricesp. 279
18.1 Matrix Representation of Operatorsp. 279
18.2 Matrix Algebrap. 282
18.3 Matrix Operationsp. 284
18.4 Pseudoinverse*p. 286
18.5 Determinantsp. 288
18.6 Orthogonal and Unitary Matricesp. 290
18.7 Simultaneous Linear Equationsp. 292
19 Eigenvalue Equationsp. 297
19.1 Matrix Eigenvalue Equationsp. 297
19.2 Matrix Diagonalizationp. 301
19.3 Differential Eigenvalue Equationsp. 305
19.4 Hermitian Operatorsp. 306
19.5 The Variational Principle*p. 309
20 Schrödinger's Equationp. 313
20.1 Quantum Mechanicsp. 313
20.1.1 Quantum Mechanical Operatorsp. 313
20.1.2 The Wavefunctionp. 316
20.1.3 The Basic Postulates*p. 317
20.2 Atoms and Moleculesp. 319
20.3 The One-Electron Atomp. 321
20.3.1 Orbitalsp. 321
20.3.2 The Radial Equation*p. 323
20.4 Hybrid Orbitalsp. 325
20.5 Antisymmetry*p. 327
20.6 Molecular Orbitals*p. 329
21 Fourier Analysisp. 333
21.1 The Fourier Transformp. 333
21.2 Spectral Line Shapes*p. 336
21.3 Discrete Fourier Transform*p. 339
21.4 Signal Processingp. 342
21.4.1 Noise Filtering*p. 342
21.4.2 Convolution*p. 345
A Computer Programsp. 351
A.1 Robust Estimatorsp. 351
A.2 FREMLp. 352
A.3 Nelder-Mead Simplex Optimizationp. 352
B Answers to Selected Exercisesp. 355
C Bibliographyp. 367
Indexp. 373