Cover image for Introduction to engineering mechanics : a continuum approach
Title:
Introduction to engineering mechanics : a continuum approach
Personal Author:
Publication Information:
Boca Raton, FL : CRC, 2009
Physical Description:
xvii, 472 p. : ill ; 25 cm.
ISBN:
9781420062717
Subject Term:
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193095 TA350 R73 2009 Open Access Book Book
Searching...
Searching...
30000003506007 TA350 R73 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

The essence of continuum mechanics -- the internal response of materials to external loading -- is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics, covering stress and strain among other key topics. This undergraduate text presents several real-world case studies, such as the St. Francis Dam, to illustrate the mathematical connections between solid and fluid mechanics, with an emphasis on practical applications of these concepts to mechanical, civil, and electrical engineering structures and design.


Author Notes

Jenn Stroud Rossmann, Lafayette College, Easton, Pennsylvania, USA
Clive L. Dym, Harvey Mudd College, Claremont, California, USA


Reviews 1

Choice Review

This book is a welcome addition to the family of resources for undergraduates majoring in mechanical, aerospace, civil, and other allied engineering fields. It offers a unified treatment of solid and fluid mechanics using a continuum mechanics approach. This approach helps students understand both disciplines and prepares them to face problems in interdisciplinary areas such as biomechanical engineering. Rossmann (Lafayette College) and Dym (Harvey Mudd College; Structural Modeling and Analysis, CH, Mar'98, 35-3890; Engineering Design, CH, Feb'95, 32-3326) have taught courses based on this work with good success. The topics on stress, strain, material behavior, basic elasticity equations, bars, torsion, beams, and column buckling relate to solid mechanics. The fluid dynamics coverage includes chapters on motion and deformations, fluid statics, fluid dynamics, and applications. A special chapter devoted to solid dynamics completes the book. All chapters include numerous solved problems and clearly emphasize the common thread of continuum mechanics. An attractive feature is the introduction of case studies that illustrate concepts with practical applications, giving an excellent appreciation of the tools developed in the book. Overall, this lucidly presented work provides a valuable introduction to engineering mechanics using a continuum approach. Summing Up: Highly recommended. Upper-division undergraduates, faculty, and practitioners. R. Kolar Naval Postgraduate School


Table of Contents

Prefacep. xv
About the Authorsp. xvii
1 Introductionp. 1
1.1 A Motivating Example: Remodeling an Underwater Structurep. 2
1.2 Newton's Laws: The First Principles of Mechanicsp. 4
1.3 Equilibriump. 5
1.4 Definition of a Continuump. 6
1.5 Mathematical Basics: Scalars and Vectorsp. 9
1.6 Problem Solvingp. 12
1.7 Examplesp. 13
Example 1.1p. 13
Solutionp. 13
Example 1.2p. 15
Solutionp. 16
1.8 Problemsp. 17
Notesp. 18
2 Strain and Stress in One Dimensionp. 19
2.1 Kinematics: Strainp. 20
2.1.1 Normal Strainp. 20
2.1.2 Shear Strainp. 23
2.1.3 Measurement of Strainp. 24
2.2 The Method of Sections and Stressp. 25
2.2.1 Normal Stressesp. 27
2.2.2 Shear Stressesp. 28
2.3 Stress-Strain Relationshipsp. 32
2.4 Equilibriump. 36
2.5 Stress in Axially Loaded Barsp. 37
2.6 Deformation of Axially Loaded Barsp. 40
2.7 Equilibrium of an Axially Loaded Barp. 42
2.8 Indeterminate Barsp. 43
2.8.1 Force (Flexibility) Methodp. 44
2.8.2 Displacement (Stiffness) Methodp. 46
2.9 Thermal Effectsp. 48
2.10 Saint-Venant's Principle and Stress Concentrationsp. 49
2.11 Strain Energy in One Dimensionp. 51
2.12 A Road Map for Strength of Materialsp. 53
2.13 Examplesp. 55
Example 2.1p. 55
Solutionp. 55
Example 2.2p. 56
Solutionp. 57
Example 2.3p. 57
Solutionp. 58
Example 2.4p. 59
Solutionp. 59
Example 2.5p. 60
Solutionp. 61
Example 2.6p. 62
Solutionp. 62
Example 2.7p. 64
Solutionp. 65
Example 2.8p. 66
Solutionp. 66
Example 2.9p. 67
Solutionp. 68
2.14 Problemsp. 69
Case Study 1 Collapse of the Kansas City Hyatt Regency Walkwaysp. 76
Problemsp. 82
Notesp. 82
3 Strain and Stress in Higher Dimensionsp. 85
3.1 Poisson's Ratiop. 85
3.2 The Strain Tensorp. 87
3.3 Strain as Relative Displacementp. 90
3.4 The Stress Tensorp. 92
3.5 Generalized Hooke's Lawp. 96
3.6 Limiting Behaviorp. 97
3.7 Properties of Engineering Materialsp. 101
Ferrous Metalsp. 103
Nonferrous Metalsp. 103
Nonmetalsp. 104
3.8 Equilibriump. 104
3.8.1 Equilibrium Equationsp. 105
3.8.2 The Two-Dimensional State of Plane Stressp. 107
3.8.3 The Two-Dimensional State of Plane Strainp. 108
3.9 Formulating Two-Dimensional Elasticity Problemsp. 109
3.9.1 Equilibrium Expressed in Terms of Displacementsp. 110
3.9.2 Compatibility Expressed in Terms of Stress Functionsp. 111
3.9.3 Some Remaining Pieces of the Puzzle of General Formulationsp. 112
3.10 Examplesp. 114
Example 3.1p. 114
Solutionp. 115
Example 3.2p. 116
Solutionp. 116
3.11 Problemsp. 116
Notesp. 121
4 Applying Strain and Stress in Multiple Dimensionsp. 123
4.1 Torsionp. 123
4.1.1 Method of Sectionsp. 123
4.1.2 Torsional Shear Stress: Angle of Twist and the Torsion Formulap. 125
4.1.3 Stress Concentrationsp. 130
4.1.4 Transmission of Power by a Shaftp. 131
4.1.5 Statically Indeterminate Problemsp. 132
4.1.6 Torsion of Inelastic Circular Membersp. 133
4.1.7 Torsion of Solid Noncircular Membersp. 135
4.1.8 Torsion of Thin-Walled Tubesp. 138
4.2 Pressure Vesselsp. 141
4.3 Transformation of Stress and Strainp. 145
4.3.1 Transformation of Plane Stressp. 146
4.3.2 Principal and Maximum Stressesp. 149
4.3.3 Mohr's Circle for Plane Stressp. 151
4.3.4 Transformation of Plane Strainp. 154
4.3.5 Three-Dimensional State of Stressp. 156
4.4 Failure Prediction Criteriap. 157
4.4.1 Failure Criteria for Brittle Materialsp. 158
4.4.1.1 Maximum Normal Stress Criterionp. 158
4.4.1.2 Mohr's Criterionp. 159
4.4.2 Yield Criteria for Ductile Materialsp. 161
4.4.2.1 Maximum Shearing Stress (Tresca) Criterionp. 161
4.4.2.2 Von Mises Criterionp. 162
4.5 Examplesp. 162
Example 4.1p. 162
Solutionp. 163
Example 4.2p. 163
Solutionp. 163
Example 4.3p. 165
Solutionp. 165
Example 4.4p. 165
Solutionp. 165
Example 4.5p. 166
Solutionp. 166
Example 4.6p. 168
Solutionp. 168
Example 4.7p. 170
Solutionp. 170
Example 4.8p. 171
Solutionp. 171
Example 4.9p. 172
Solutionp. 172
Example 4.10p. 177
Solutionp. 177
Example 4.11p. 180
Solutionp. 180
4.6 Problemsp. 183
Case Study 2 Pressure Vessel Safetyp. 188
Why Are Pressure Vessels Spheres and Cylinders?p. 189
Why Do Pressure Vessels Fail?p. 194
Problemsp. 197
Notesp. 200
5 Beamsp. 201
5.1 Calculation of Reactionsp. 201
5.2 Method of Sections: Axial Force, Shear, Bending Momentp. 202
Axial Force in Beamsp. 203
Shear in Beamsp. 203
Bending Moment in Beamsp. 205
5.3 Shear and Bending Moment Diagramsp. 206
Rules and Regulations for Shear and Bending Moment Diagramsp. 206
Shear Diagramsp. 206
Moment Diagramsp. 207
5.4 Integration Methods for Shear and Bending Momentp. 207
5.5 Normal Stresses in Beamsp. 210
5.6 Shear Stresses in Beamsp. 214
5.7 Examplesp. 221
Example 5.1p. 221
Solutionp. 221
Example 5.2p. 223
Solutionp. 224
Example 5.3p. 229
Solutionp. 230
Example 5.4p. 231
Solutionp. 232
Example 5.5p. 234
Solutionp. 235
Example 5.6p. 236
Solutionp. 237
5.8 Problemsp. 239
Case Study 3 Physiological Levers and Repairsp. 241
The Forearm Is Connected to the Elbow Jointp. 241
Fixing an Intertrochanteric Fracturep. 245
Problemsp. 247
Notesp. 248
6 Beam Deflectionsp. 251
6.1 Governing Equationp. 251
6.2 Boundary Conditionsp. 255
6.3 Solution of Deflection Equation by Integrationp. 256
6.4 Singularity Functionsp. 259
6.5 Moment Area Methodp. 260
6.6 Beams with Elastic Supportsp. 264
6.7 Strain Energy for Bent Beamsp. 266
6.8 Flexibility Revisited and Maxwell-Betti Reciprocal Theoremp. 269
6.9 Examplesp. 273
Example 6.1p. 273
Solutionp. 273
Example 6.2p. 275
Solutionp. 275
Example 6.3p. 278
Solutionp. 278
Example 6.4p. 281
Solutionp. 282
6.10 Problemsp. 285
Notesp. 288
7 Instability: Column Bucklingp. 289
7.1 Euler's Formulap. 289
7.2 Effect of Eccentricityp. 294
7.3 Examplesp. 298
Example 7.1p. 298
Solutionp. 298
Example 7.2p. 300
Solutionp. 301
7.4 Problemsp. 303
Case Study 4 Hartford Civic Arenap. 304
Notesp. 307
8 Connecting Solid and Fluid Mechanicsp. 309
8.1 Pressurep. 310
8.2 Viscosityp. 311
8.3 Surface Tensionp. 315
8.4 Governing Lawsp. 315
8.5 Motion and Deformation of Fluidsp. 316
8.5.1 Linear Motion and Deformationp. 316
8.5.2 Angular Motion and Deformationp. 317
8.5.3 Vorticityp. 319
8.5.4 Constitutive Equation (Generalized Hooke's Law) for Newtonian Fluidsp. 321
8.6 Examplesp. 322
Example 8.1p. 322
Solutionp. 323
Example 8.2p. 324
Solutionp. 324
Example 8.3p. 325
Solutionp. 326
Example 8.4p. 327
Solutionp. 327
8.7 Problemsp. 328
Case Study 5 Mechanics of Biomaterialsp. 330
Nonlinearityp. 332
Composite Materialsp. 333
Viscoelasticityp. 336
Problemsp. 338
Notesp. 339
9 Fluid Staticsp. 341
9.1 Local Pressurep. 341
9.2 Force Due to Pressurep. 342
9.3 Fluids at Restp. 345
9.4 Forces on Submerged Surfacesp. 348
9.5 Buoyancyp. 355
9.6 Examplesp. 357
Example 9.1p. 357
Solutionp. 357
Example 9.2p. 358
Solutionp. 359
Example 9.3p. 360
Solutionp. 361
Example 9.4p. 363
Solutionp. 364
Example 9.5p. 365
Solutionp. 36
9.7 Problemsp. 368
Case Study 6 St. Francis Damp. 373
Problemsp. 375
Notesp. 376
10 Fluid Dynamics: Governing Equationsp. 377
10.1 Description of Fluid Motionp. 377
10.2 Equations of Fluid Motionp. 379
10.3 Integral Equations of Motionp. 379
10.3.1 Mass Conservationp. 380
10.3.2 F = ma, or Momentum Conservationp. 382
10.3.3 Reynolds Transport Theoremp. 385
10.4 Differential Equations of Motionp. 386
10.4.1 Continuity, or Mass Conservationp. 386
10.4.2 F = ma,, or Momentum Conservationp. 388
10.5 Bernoulli Equationp. 391
10.6 Examplesp. 392
Example 10.1p. 392
Solutionp. 393
Example 10.2p. 394
Solutionp. 395
Example 10.3p. 396
Solutionp. 397
Example 10.4p. 398
Solutionp. 399
Example 10.5p. 402
Solutionp. 402
Example 10.6p. 404
Solutionp. 405
10.7 Problemsp. 406
Notesp. 408
11 Fluid Dynamics: Applicationsp. 411
11.1 How Do We Classify Fluid Flows?p. 411
11.2 What's Going on Inside Pipes?p. 413
11.3 Why Can an Airplane Fly?p. 417
11.4 Why Does a Curveball Curve?p. 419
11.5 Problemsp. 423
Notesp. 426
12 Solid Dynamics: Governing Equationsp. 427
12.1 Continuity, or Mass Conservationp. 427
12.2 F = ma, or Momentum Conservationp. 429
12.3 Constitutive Laws: Elasticityp. 431
Notep. 433
Referencesp. 435
Appendix A Second Moments of Areap. 439
Appendix B A Quick Look at the Del Operatorp. 443
Divergencep. 444
Physical Interpretation of the Divergencep. 444
Examplep. 445
Curlp. 445
Physical Interpretation of the Curlp. 445
Examplesp. 446
Example 1p. 446
Example 2p. 446
Laplacianp. 447
Appendix C Property Tablesp. 449
Appendix D All the Equationsp. 455
Indexp. 457