Cover image for IP/ATM mobile satellite networks
Title:
IP/ATM mobile satellite networks
Personal Author:
Series:
Artech House universal personal communications series
Publication Information:
Boston : Artech House, c2002.
ISBN:
9781580531122
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004801118 TK5104 F37 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

This practical resource gives professionals the information needed to analyze and evaluate the performance of satellite links and networks, and to understand the issues and limitations of IP/ATM over SATCOM technology, used for the transmission of multimedia information services. The book examines current and future land mobile satellite (LMS) communication systems, and the techniques necessary to support reliable and efficient communication.


Author Notes

John R. Farserotu holds an M.S.E.E. in communications from George Washington University and a Ph.D. from Deft University of Technology.

Farserotu is head of the Wireless Communication Section at CSEM in Neuchâtel, Switzerland, where his research interests include wireless communication, modulation and coding, satellite communication and networking.

050


Table of Contents

Prefacep. xvii
Acknowledgmentsp. xix
Chapter 1 Introductionp. 1
1.1 Overviewp. 1
1.2 IMT-2000 and the Role of Satcom and LMSp. 2
1.2.1 Global coveragep. 2
1.2.2 Terrestrial alternative or gap-filling in IMT-2000p. 3
1.2.3 Enable IMT-2000 and the role of LMSp. 3
1.2.4 Communication architecture employing LMSp. 3
1.3 Multimedia Information Servicesp. 5
1.4 IP and ATM Networksp. 6
1.5 Preview of the Bookp. 7
1.6 Summaryp. 9
Referencesp. 9
Chapter 2 Overview of Land Mobile Satellite Communicationp. 11
2.1 Introductionp. 11
2.1.1 Characteristics and limits of LMS systemsp. 11
2.2 General Orbital Considerations (LEO, MEO, or GEO)p. 13
2.2.1 General satellite orbital modelp. 14
2.2.2 Orbital periodp. 15
2.2.3 Coverage, beamwidth, and rangep. 16
2.2.4 Intersatellite crosslinksp. 17
2.3 Frequency Allocations and Regulatory Issuesp. 18
2.4 Interference Constraintsp. 20
2.4.1 Interference limitsp. 20
2.4.2 MSS space-to-Earth band (2,170-2,200 MHz)p. 20
2.4.3 MSS Earth-to-space band (2,170-2,200 MHz)p. 20
2.4.4 Satellite unwanted emissionsp. 21
2.4.5 User terminal unwanted emissionsp. 21
2.4.6 WLANs and short-range wireless links in the ISM bandp. 21
2.5 Link Budget Analysisp. 21
2.5.1 Power and gainp. 22
2.5.2 Path lossesp. 22
2.5.3 Thermal noisep. 22
2.5.4 Link analysis for satellite with onboard processingp. 23
2.6 Over View of Existing and Planned Systemsp. 23
2.6.1 Globalstarp. 24
2.6.2 ICOp. 25
2.6.3 INMARSAT-Cp. 26
2.6.4 Iridiump. 26
2.6.5 Orbcommp. 26
2.7 Land Mobile Satcom in the IMT-2000p. 26
2.7.1 UTRA and WCDMAp. 27
2.7.2 S-UMTSp. 27
2.8 S-UMTS ITU-R RTT PROPOSALSp. 28
2.8.1 SAT-CDMAp. 29
2.8.2 ESA RTT proposalsp. 29
2.8.3 ICO global communications RTT proposalp. 31
2.8.4 Other (non-ITU proposals)p. 31
2.8.5 Services and performance requirementsp. 31
2.9 Evolving Towards Fourth-Generation Mobile Systems and Beyond (a Unified Approach)p. 33
2.9.1 Mobile broadband servicep. 33
2.9.2 Broadband SATCOM: ATM-SATCOM systems and developmentsp. 34
2.10 Summaryp. 36
Referencesp. 36
Chapter 3 Land Mobile Satellite Communication Channelp. 39
3.1 Multipath Fadingp. 40
3.1.1 Rayleigh fading and the diffuse multipath signal componentsp. 40
3.1.2 The signalp. 41
3.2 Rayleigh Fading Process and the Diffuse Signal Componentsp. 42
3.3 Rician Fading and the Los and Specular Signal Componentsp. 43
3.3.1 LOS and specular componentsp. 43
3.3.2 Rician fadingp. 44
3.4 Nakagami Fading Modelp. 46
3.5 Shadowing and the Lognormal Modelp. 46
3.6 Shadowing and Fading (Loo's Model)p. 47
3.6.1 Shadowing and fading (Loo's model)p. 47
3.6.2 The signal phasep. 47
3.7 Frequency, Time, and Space Selective Fadingp. 48
3.7.1 Coherence bandwidth (f[subscript 0])p. 48
3.7.2 Coherence length ([iota subscript 0])p. 48
3.7.3 Coherence time ([tau subscript 0])p. 48
3.7.4 Angle of arrival deviation ([sigma subscript 0])p. 49
3.8 Power Spectral Densityp. 49
3.8.1 Case 1 (omni antenna)p. 50
3.8.2 Case 2 (directive antenna)p. 51
3.9 Power Delay Spectrump. 51
3.9.1 Case 1 (omni antenna)p. 51
3.9.2 Case 2 (directive antenna)p. 52
3.10 Fading Ratep. 53
3.10.1 Level crossing ratep. 53
3.10.2 Case 1 (Rayleigh fading)p. 54
3.10.3 Case 2 (Rician fading)p. 54
3.11 Rayleigh Fade Statisticsp. 54
3.11.1 Average fade durationp. 54
3.11.2 Availability in multipath fadingp. 55
3.12 Summaryp. 56
Referencesp. 56
Appendix 3A Useful Equationsp. 58
Chapter 4 System Design Issuesp. 59
4.1 Introductionp. 59
4.2 The Waveform and System Design Driversp. 60
4.2.1 LMS air interface driversp. 60
4.2.2 Cost and complexity of CDMA systemsp. 61
4.2.3 LMS architecturep. 61
4.3 Waveform and Technology Considerationsp. 62
4.3.1 Multiple access techniques and issuesp. 63
4.3.2 CDMA for LMSp. 63
4.3.3 Multiuser detection and interference cancellationp. 64
4.3.4 Interference cancellationp. 67
4.3.5 Channel estimation and equalizationp. 68
4.3.6 Power controlp. 68
4.3.7 Synchronizationp. 70
4.3.8 Modulationp. 71
4.3.9 Error control and correction issues for LMSp. 73
4.3.10 Duplexingp. 74
4.3.11 Handoverp. 74
4.3.12 Receiver implementation and equalizationp. 75
4.3.13 Adaptive equalizationp. 76
4.3.14 Interleavingp. 77
4.3.15 Adaptive "smart" antenna technologyp. 78
4.3.16 Side information and waveform implementationp. 78
4.3.17 Securityp. 79
4.4 Summary and Concluding Remarksp. 79
Referencesp. 80
Chapter 5 Introduction to Multiple Access Techniquesp. 83
5.1 Introductionp. 83
5.2 FDMAp. 83
5.2.1 FDMA capacityp. 86
5.2.2 ACI limitationp. 86
5.2.3 Frequency uncertainty and guard bandp. 86
5.2.4 Frequency uncertainty due to drift and wanderp. 87
5.2.5 Sensitivity to intermod productsp. 87
5.3 TDMAp. 88
5.4 Time and Frequency Uncertainty Over Satellite Linksp. 89
5.4.1 The sources of time and frequency uncertaintyp. 91
5.4.2 Satellite motionp. 92
5.4.3 Time uncertainty due to wander and driftp. 94
5.4.4 Short-term stability: Timing jitter between clocksp. 95
5.5 DS-CDMAp. 95
5.5.1 CDMA capacityp. 96
5.5.2 DS-CDMA receiverp. 97
5.5.3 IP/ATM over CDMA integration issuesp. 101
5.6 Hybrid FH/DS-CDMA Waveformp. 102
5.7 Wcdma-Based S-UMTS Air Interfacep. 103
5.7.1 CDMA codes for UMTSp. 104
5.8 Summaryp. 107
Referencesp. 107
Chapter 6 MPSK TCMp. 109
6.1 Introductionp. 109
6.2 Modeling of MPSK and Pragmatic MPSK TCMp. 110
6.2.1 General MPSK performance modelp. 111
6.2.2 Pragmatic MPSK TCM performance model and modificationsp. 113
6.3 Pragmatic MPSK TCM Performancep. 117
6.3.1 Performance in AWGNp. 117
6.3.2 Performance in Rician fadingp. 118
6.3.3 Performance in Rayleigh fadingp. 120
6.4 MPSK TCM with Symbol Diversityp. 121
6.5 Concatenated Reed-Solomon MPSK TCMp. 122
6.6 Summary and Concluding Remarksp. 123
Referencesp. 124
Appendix 6A Terms at Hamming Distance 12p. 125
Chapter 7 Antennasp. 127
7.1 Introductionp. 127
7.2 Basics of Antennas for LMSp. 127
7.2.1 Directivity and gainp. 127
7.2.2 The LMS terminalp. 129
7.2.3 Trackingp. 129
7.3 Antennas and Diversityp. 130
7.3.1 Antenna diversity in the ground segmentp. 130
7.3.2 Satellite diversityp. 131
7.3.3 Diversity combining techniquesp. 131
7.4 Smart Antennasp. 136
7.4.1 Phased arrayp. 136
7.4.2 Adaptive arrayp. 137
7.5 Summary and Concluding Remarksp. 140
Referencesp. 140
Chapter 8 Multimedia Information Services for LMSp. 143
8.1 Introductionp. 143
8.1.1 What is multimedia?p. 143
8.1.2 Design goals of multimedia systemsp. 144
8.2 Multimedia Information Servicesp. 145
8.2.1 Mobile multimedia servicesp. 145
8.2.2 Multimedia over LMS issuesp. 146
8.2.3 Contentp. 147
8.2.4 Reuseable objects, distribution, and delivery mechanismsp. 147
8.2.5 Service from a SATCOM perspectivep. 148
8.2.6 Comments on mobile broadband servicep. 149
8.2.7 Securityp. 149
8.3 Overview of Standardsp. 150
8.3.1 MPEG standards for multimediap. 150
8.3.2 Status of MPEG4 over mobilep. 151
8.3.3 Error resilient video codingp. 151
8.4 Quality of Service Requirementsp. 152
8.4.1 Delayp. 152
8.4.2 Error performancep. 153
8.5 A Hypothetical Reference Connection for Land Mobile Satellitep. 153
8.5.1 Error performance apportionmentp. 153
8.5.2 Delay and delay equalizationp. 154
8.5.3 Sources of delay variationp. 155
8.5.4 Satellite motion induced delay variationp. 155
8.6 Network Service Perspectivesp. 156
8.6.1 IP and ATM networksp. 156
8.6.2 Point-to-point servicep. 157
8.6.3 Broadcast servicep. 157
8.6.4 Multicast service (via satellite)p. 157
8.7 Middlewarep. 158
8.7.1 What is middleware?p. 158
8.7.2 Resource allocation and adaptabilityp. 158
8.8 Summaryp. 159
Referencesp. 160
Chapter 9 ATM over SATCOMp. 163
9.1 Introduction to ATMp. 163
9.1.1 The potential benefits of ATM over SATCOMp. 163
9.1.2 Key issues with respect to the operation of ATM over SATCOMp. 165
9.2 The ATM Protocol Stackp. 167
9.2.1 Service classes and the B-ISDN reference modelp. 167
9.2.2 ATM cell structurep. 168
9.3 IP/ATM-SATCOMp. 169
9.4 The Traffic Profile and Its Relationship to ATM-SATCOM Linksp. 170
9.4.1 Sensitivity to service type and traffic intensityp. 170
9.4.2 SATCOM implicationsp. 171
9.5 ATM QoS Performance Measuresp. 172
9.6 ATM-SATCOM Systems and Developmentsp. 173
9.7 IMPLEMENTATION OF ATM-SATCOM Networksp. 174
9.7.1 ATM-SATCOM relayp. 174
9.7.2 What are OBP, signal regeneration and OBS?p. 180
9.7.3 Satellite switched ATMp. 182
9.8 CDMA-BASED ATM-SATCOM Connection Admission Controlp. 185
9.8.1 Connection admission controlp. 185
9.8.2 Capacity-based ATM-SATCOM CAC for the "switch-in-the-sky"p. 185
9.8.3 Capacity-based ATM-SATCOM CAC at the SGTp. 186
9.8.4 ATM-CDMA CAC examplep. 186
9.9 Summaryp. 188
Referencesp. 188
Chapter 10 TCP/IP over Satellitep. 191
10.1 Introductionp. 191
10.2 Description of TCP/IPp. 191
10.2.1 IP datagramp. 192
10.2.2 TCP segmentp. 193
10.3 Key Issues and Limitationsp. 194
10.3.1 GEO versus LEOp. 195
10.3.2 Enhanced TCPp. 195
10.3.3 QoS awarenessp. 196
10.3.4 IP routing and ATM switchingp. 197
10.3.5 IP routing techniquesp. 198
10.3.6 IP multicastingp. 201
10.3.7 IP security over SATCOMp. 201
10.3.8 Congestion controlp. 201
10.4 TCP/IP Over ATM-SATCOM and the Importance of Error Controlp. 202
10.4.1 Performance dependency on TCP window sizep. 202
10.4.2 The combined effects of errors, delay, and window sizep. 203
10.4.3 TCP acknowledgment mechanismp. 204
10.4.4 The dependency on MTU size and delayp. 205
10.4.5 Dependency on TCP window size and MTU sizep. 207
10.5 Summaryp. 207
Referencesp. 207
Chapter 11 Traffic Modelingp. 211
11.1 Introductionp. 211
11.2 Poisson Arrivalsp. 212
11.2.1 Poisson distributionp. 213
11.2.2 Birth-death process state flow diagramp. 213
11.2.3 Equilibrium equationp. 214
11.2.4 Balance equationp. 214
11.3 Queuing Modelsp. 215
11.3.1 M/M/1p. 215
11.3.2 Queuing delayp. 216
11.3.3 General M/M/S/S and M/D/S/S queuesp. 217
11.3.4 Erlangs and traffic loadp. 218
11.3.5 Grade of servicep. 219
11.3.6 Probability of blockingp. 219
11.3.7 Probability of blocking and the Erlang B formulap. 219
11.4 Umts Traffic Considerationsp. 220
11.5 Satcom Considerationsp. 221
11.5.1 SATCOM delay variance analysis for multimedia component servicesp. 221
11.5.2 Delay variation common to all ATM VCs on an ATM-SATCOM linkp. 221
11.5.3 Delay variation relative to the ATM VCs on an ATM-SATCOM linkp. 222
11.6 Summaryp. 224
Referencesp. 224
Chapter 12 MAC Layer Considerationsp. 227
12.1 Introductionp. 227
12.2 MAC Layer Protocolsp. 227
12.2.1 FAMA protocolsp. 229
12.2.2 DAMA protocolsp. 229
12.2.3 Random access protocolsp. 230
12.2.4 Hybrid random access and reservation protocolsp. 230
12.2.5 Adaptive protocolsp. 230
12.2.6 UMTS MAC protocol point of referencep. 231
12.2.7 Satellite versus terrestrial MACp. 232
12.2.8 Proprietary MAC versus standard MAC for satellitesp. 233
12.3 Connection Admission Control, Resource Allocation, and Managementp. 233
12.3.1 Connection admission controlp. 233
12.3.2 Channel allocationp. 234
12.3.3 Radio resource allocation and managementp. 235
12.4 Capacity and Resource Estimationp. 235
12.4.1 Capacity in Erlangs, blocking, and grade of servicep. 235
12.4.2 Resource estimation, accuracy and limitationsp. 237
12.4.3 ALOHA and slotted ALOHAp. 237
12.5 Slotted ALOHA for UMTS Voice, Data, and Video Trafficp. 240
12.5.1 Offered traffic in requests per slotp. 240
12.5.2 Total traffic and probability of collisionp. 240
12.5.3 Delay and the Pollaczek-Khinchin formulap. 242
12.6 Summary and Concluding Remarksp. 242
Referencesp. 242
Chapter 13 Cost Issuesp. 245
13.1 Introductionp. 245
13.2 Cost Modelp. 245
13.2.1 Spacecraft massp. 246
13.2.2 Modeling the mass of the communication payloadp. 247
13.2.3 Antennasp. 248
13.2.4 Gimballed assembly, autotrack receiver, and electronicsp. 249
13.2.5 Receiver, baseband, and multiplexingp. 249
13.2.6 Power amplifier and assemblyp. 249
13.2.7 Processorp. 249
13.2.8 Miscellaneousp. 249
13.2.9 Example SATCOM payload massp. 249
13.2.10 Development costp. 251
13.2.11 Propellant and ABMp. 251
13.2.12 Launch cost per kilogramp. 252
13.3 Summary and Concluding Remarksp. 253
Referencesp. 253
Appendix 13A Antenna Size and Mass Datap. 255
Appendix 13B Satellite Mass and Power Datap. 256
Appendix 13C Spacecraft Cost Data in 1998 U.S. Dollarp. 257
Appendix 13D Launch Vehicle and Costp. 258
Appendix 13E Mass of Communication Payload Componentsp. 259
Appendix 13F Power Amplifier and Assembly (PAA) Datap. 260
List of Acronymsp. 261
About the Authorsp. 267
Indexp. 271