Cover image for Nanofibers and nanotechnology in textiles
Title:
Nanofibers and nanotechnology in textiles
Series:
Woodhead publishing in materials
Publication Information:
Cambridge : Woodhead Publishing Ltd., 2007
Physical Description:
xvi, 528 p. : ill. ; 24 cm.
ISBN:
9781845691059

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010170003 TA418.9.N35 N39 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Nanotechnology is revolutionising the world of materials. This important book reviews its impact in developing a new generation of textile fibers with enhanced functionality and a wide range of applications. The first part of the book reviews nanofiber production, discussing how different fiber types can be produced using electrospinning techniques. Part two analyses the production and properties of carbon nanotubes and polymer nanocomposites and their applications in such areas as aerospace engineering. The third part of the book considers ways of using nanotechnology to improve polymer properties such as thermal stability and dyeability. The final part of the book reviews the use of nanotechnology to modify textile surfaces, including the use of coatings and films, in order to improve hydrophobic, filtration and other properties.

Nanofibers and nanotechnology in textiles is a valuable reference in assessing and using a new generation of textile fibers in applications as diverse as tissue and aerospace engineering.


Author Notes

Dr Phil Brown is an Assistant Professor in the School of Materials Science and Engineering at Clemson University.

Dr Kate Stevens is a Research Associate in the Center for Advanced Engineering Fibers and Films at Clemson University.


Table of Contents

D. R. SalemF. K. Ko and M. R. GandhiE. Smit and U. Buttner and R. D. SandersonM. Afshari and R. Kotek and A. E. Tonelli and D.-W. JungT. Lin and X. G. WangM. RegiM. S. P. Shaffer and J. K. W. SandlerR. E. GorgaS. J. BullM. Sfiligoj Smole and K. Stana KleinschekA. E. TonelliQ. Fan and G. ManiR. A. Kalgaonkar and J. P. JogY. K. Kim and P. K. PatraT. Stegmaier and M. Dauner and V. Von Arnim and A. Scherrieble and A. Dinkelmann and H. PlanckG. K. Hyde and J. P. HinestrozaI. LuzinovS. Minko and M. MotornovC. Y. Lew and G. M. McNally
Contributor contact detailsp. xiii
Part I Nanofiber production
1 Electrospinning of nanofibers and the charge injection methodp. 3
1.1 Introductionp. 3
1.2 Principles of electrostatic atomizationp. 3
1.3 Electrospraying and electrospinning by the capillary methodp. 5
1.4 Electrospraying and electrospinning by the charge injection methodp. 12
1.5 Referencesp. 20
2 Producing nanofiber structures by electrospinning for tissue engineeringp. 22
2.1 Introductionp. 22
2.2 Fabrication of nanofibrous scaffoldsp. 28
2.3 Characterization of nanofibrous scaffoldsp. 30
2.4 Cell-scaffold interactionp. 36
2.5 Summary and conclusionp. 42
2.6 Acknowledgmentsp. 43
2.7 Referencesp. 43
3 Continuous yarns from electrospun nanofibersp. 45
3.1 Introductionp. 45
3.2 Using electrospun nanofibers: background and terminologyp. 45
3.3 Controlling fiber orientationp. 48
3.4 Producing noncontinuous or short yarnsp. 49
3.5 Producing continuous yarnsp. 52
3.6 Summary and future trendsp. 66
3.7 Sources of further information and advicep. 67
3.8 Referencesp. 68
4 Producing polyamide nanofibers by electrospinningp. 71
4.1 Introductionp. 71
4.2 The electrospinning processp. 71
4.3 Properties of electrospun nanofibersp. 73
4.4 Measuring the effects of different spinning conditions and the use of high molecular weight polymers on the properties of electrospun nanofibersp. 75
4.5 Improving the properties of electrospun nanofibers: experimental resultsp. 77
4.6 Conclusionsp. 85
4.7 Referencesp. 87
5 Controlling the morphologies of electrospun nanofibresp. 90
5.1 Introductionp. 90
5.2 The electrospinning process and fibre morphologyp. 91
5.3 Polymer concentration and fibre diameterp. 93
5.4 Fibre bead formation and fibre surface morphologyp. 96
5.5 Controlling fibre alignment and web morphologiesp. 100
5.6 Bicomponent cross-sectional nanofibresp. 103
5.7 Future trendsp. 107
5.8 Acknowledgementsp. 108
5.9 Referencesp. 108
Part II Carbon nanotubes and nanocompositesp. 111
6 Synthesis, characterization and application of carbon nanotubes: the case of aerospace engineeringp. 113
6.1 Introductionp. 113
6.2 The development and structure of carbon nanotubesp. 115
6.3 Synthesis of carbon nanotubesp. 124
6.4 Characterization techniquesp. 140
6.5 Purification techniquesp. 152
6.6 The use of carbon nanotubes in aerospace engineeringp. 157
6.7 Nanostructured composite materials for aerospace applicationsp. 162
6.8 Nanostructured solid propellants for rocketsp. 170
6.9 Frequency selective surfaces for aerospace applicationsp. 175
6.10 Other aerospace applications of carbon nanotubesp. 182
6.11 Conclusionsp. 184
6.12 Acknowledgmentsp. 184
6.13 Referencesp. 185
7 Carbon nanotube and nanofibre reinforced polymer fibresp. 194
7.1 Introductionp. 194
7.2 Synthesis and properties of carbon nanotubesp. 197
7.3 Developing nanotube/nanofibre-polymer compositesp. 201
7.4 Adding nanotubes and nanofibres to polymer fibresp. 206
7.5 Analysing the rheological properties of nanotube/nanofibre-polymer compositesp. 208
7.6 Analysing the microstructure of nanotube/nanofibre-polymer compositesp. 212
7.7 Mechanical, electrical and other properties of nanocomposite fibresp. 216
7.8 Future trendsp. 221
7.9 Referencesp. 222
8 Structure and properties of carbon nanotube-polymer fibers using melt spinningp. 235
8.1 Introductionp. 235
8.2 Producing carbon nanotube-polymer fibersp. 236
8.3 Thermal characterizationp. 237
8.4 Fiber morphologyp. 238
8.5 Mechanical properties of fibersp. 245
8.6 Conclusions and future trendsp. 251
8.7 Sources of further information and advicep. 252
8.8 Acknowledgmentsp. 252
8.9 Referencesp. 253
9 Multifunctional polymer nanocomposites for industrial applicationsp. 256
9.1 Introductionp. 256
9.2 The development of functional polymer nanocompositesp. 257
9.3 Improving the mechanical properties of polymer nanocompositesp. 258
9.4 Improving the fire-retardant properties of polymer nanocompositesp. 260
9.5 Improving the tribological properties of polymer nanocompositesp. 262
9.6 Case-study: development of a nanocomposite sliding seal ringp. 265
9.7 Enhancing the functionality of polymer nanocompositesp. 273
9.8 Conclusionsp. 275
9.9 Acknowledgementsp. 275
9.10 Referencesp. 275
10 Nanofilled polypropylene fibresp. 281
10.1 Introductionp. 281
10.2 Polymer layered silicate nanocompositesp. 282
10.3 The structure and properties of layered silicate polypropylene nanocompositesp. 284
10.4 Nanosilica filled polypropylene nanocompositesp. 289
10.5 Calcium carbonate and other additivesp. 291
10.6 Conclusionp. 293
10.7 Referencesp. 293
Part III Improving polymer functionalityp. 299
11 Nanostructuring polymers with cyclodextrinsp. 301
11.1 Introductionp. 301
11.2 Formation and characterization of polymer-cyclodextrin-inclusion compoundsp. 302
11.3 Properties of polymer-cyclodextrin-inclusion compoundsp. 304
11.4 Homo- and block copolymers coalesced from their cyclodextrin-inclusion compoundsp. 308
11.5 Constrained polymerization in monomer-cyclodextrin-inclusion compoundsp. 310
11.6 Coalescence of common polymer-cyclodextrin-inclusion compounds to achieve fine polymer blendsp. 311
11.7 Temporal and thermal stabilities of polymers nanostructured with cyclodextrinsp. 312
11.8 Cyclodextrin-modified polymersp. 313
11.9 Polymers with covalently bonded cyclodextrinsp. 314
11.10 Conclusionsp. 316
11.11 Referencesp. 316
12 Dyeable polypropylene via nanotechnologyp. 320
12.1 Introductionp. 320
12.2 Dyeing techniques for unmodified polypropylenep. 321
12.3 Modified polypropylene for improved dyeability using copolymerization and other techniquesp. 323
12.4 Polyblending and other techniques for improving polypropylene dyeabilityp. 324
12.5 Dyeing polypropylene nanocompositesp. 326
12.6 Using X-ray diffraction analysis and other techniques to assess dyed polypropylene nanocompositesp. 334
12.7 Conclusionsp. 345
12.8 Acknowledgmentsp. 346
12.9 Referencesp. 346
13 Polyolefin/clay nanocompositesp. 351
13.1 Introductionp. 351
13.2 Organomodification of claysp. 354
13.3 Polymer/clay nanocompositesp. 356
13.4 Polypropylene/clay nanocompositesp. 360
13.5 Polyethylene/clay nanocompositesp. 367
13.6 Higher polyolefin/clay nanocompositesp. 372
13.7 Conclusionsp. 374
13.8 Referencesp. 381
14 Multiwall carbon nanotube-nylon-6 nanocomposites from polymerizationp. 386
14.1 Introductionp. 386
14.2 Nanocomposite synthesis and productionp. 387
14.3 Characterization techniquesp. 388
14.4 Properties of multiwall carbon nanotube-nylon-6 nanocomposite fibersp. 391
14.5 Conclusionsp. 404
14.6 Acknowledgmentsp. 405
14.7 Referencesp. 406
Part IV Nanocoatings and surface modification techniquesp. 407
15 Nanotechnologies for coating and structuring of textilesp. 409
15.1 Introductionp. 409
15.2 Production of nanofiber nonwovens using electrostatic spinningp. 410
15.3 Anti-adhesive nanocoating of fibers and textilesp. 417
15.4 Water- and oil-repellent coatings by plasma treatmentp. 418
15.5 Self-cleaning superhydrophobic surfacesp. 421
15.6 Sources of further information and advicep. 427
15.7 Referencesp. 427
16 Electrostatic self-assembled nanolayer films for cotton fibersp. 428
16.1 Introductionp. 428
16.2 Principles of electrostatic self-assembly for creating nanolayer filmsp. 428
16.3 Advantages and disadvantages of electrostatic self-assemblyp. 431
16.4 Substrates used for electrostatic self-assemblyp. 432
16.5 Polyelectrolytes used for electrostatic self-assemblyp. 434
16.6 Analyzing self-assembled nanolayer films on cottonp. 436
16.7 Conclusions: functional textiles for protection, filtration and other applicationsp. 439
16.8 Referencesp. 440
17 Nanofabrication of thin polymer filmsp. 448
17.1 Introductionp. 448
17.2 Macromolecular platform for nanofabricationp. 449
17.3 'Grafting from' technique for synthesis of polymer filmsp. 451
17.4 'Grafting to' technique for synthesis of polymer filmsp. 455
17.5 Synthesis of smart switchable coatingsp. 458
17.6 Synthesis of ultrahydrophobic materialsp. 464
17.7 Conclusionsp. 466
17.8 Acknowledgmentsp. 466
17.9 Referencesp. 467
18 Hybrid polymer nanolayers for surface modification of fibersp. 470
18.1 Introduction: smart textiles via thin hybrid filmsp. 470
18.2 Mechanisms of responsive behavior in thin polymer filmsp. 471
18.3 Polymer-polymer hybrid layersp. 478
18.4 Polymer-particles hybrid layersp. 484
18.5 Hierarchical assembly of nanostructured hybrid filmsp. 485
18.6 Future trendsp. 489
18.7 Sources of further information and advicep. 490
18.8 Acknowledgmentp. 490
18.9 Referencesp. 490
19 Structure-property relationships of polypropylene nanocomposite fibresp. 493
19.1 Introductionp. 493
19.2 Materials, processing and characterisation techniquesp. 495
19.3 Structure and morphologyp. 497
19.4 Phase homogeneity and spinline stabilityp. 502
19.5 Optical birefringence and infrared activationp. 505
19.6 Crystallisation behaviour and mechanical performancep. 509
19.7 Exfoliation by extensional flow deformationp. 513
19.8 Conclusionsp. 514
19.9 Referencesp. 515
Indexp. 519