Cover image for Biological and pharmaceutical nanomaterials
Title:
Biological and pharmaceutical nanomaterials
Series:
Nanotechnologies for the life sciences ; 2
Publication Information:
Weinheim : John Wiley, 2006
ISBN:
9783527313822
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010042600 TA418.9.N35 B564 2006 Open Access Book Book
Searching...
Searching...
30000010102555 TA418.9.N35 B564 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This first comprehensive yet concise overview of all important classes of biological and pharmaceutical nanomaterials presents in one volume the different kinds of natural biological compounds that form nanomaterials or that may be used to purposefully create them. This unique single source of information brings together the many articles published in specialized journals, which often remain unseen by members of other, related disciplines. Covering pharmaceutical, nucleic acid, peptide and DNA-Chitosan nanoparticles, the book focuses on those innovative materials and technologies needed for the continued growth of medicine, healthcare, pharmaceuticals and human wellness.
For chemists, biochemists, cell biologists, materials scientists, biologists, and those working in the pharmaceutical and chemical industries.


Author Notes

Challa Kumar is currently the Group Leader of Nanofabrication at the Center for Advanced Microstructures and Devices (CAMD), Baton Rouge, USA. His research interests are in developing novel synthetic methods for functional nanomaterials and innovative therapeutic, diagnostic and sensory tools based on nanotechnology. Prior to eight years of industrial R&D with ICI and United Breweries, he researched at the Max Planck Institutes for Biochemistry in Munich and for Carbon Research in Mülheim, both Germany. He obtained his Ph.D. in synthetic organic chemistry from Sri Sathya Sai Institute of Higher Learning, Prashanti Nilayam, India.


Table of Contents

Thom LaBean and Sung Ha ParkGuy Zuber and Benedicte Pons and Andrew W. FraleySarah WeismanJulio C. Fernandes and Marcio Jose Tiera and Francoise M. WinnikAnne-Marie Orecchioni and Cecile Duclairoir and Juan Manuel Irache and Evelyne NakacheKlaus LangerJuan Manuel Irache and Socorro EspuelasMargit Sara and D. Pum and C. Huber and N. Ilk and M. Pleschberger and U. B. SleytrJonghwi Lee and Gio-Bin Lim and Hesson ChungRainer H. Muller and Eliana B. Souto and Torsten Goppert and Sven GohlaMostafa Sadoqi and Sunil Kumar and Cesar Lau-Cam and Vishal SaxenaR. Pawar and A. Avramoff and A. J. Domb
Prefacep. XIV
List of Contributorsp. XVII
I DNA-based Nanomaterialsp. 1
1 Self-assembled DNA Nanotubesp. 3
1.1 Introductionp. 3
1.2 DNA Nanotubes Self-assembled from DX Tilesp. 4
1.3 3DAE-E DX Tile Nanotubesp. 5
1.4 DAE-O DX Tile Nanotubesp. 9
1.5 TX Tile Nanotubesp. 11
1.6 4 x 4 Tile Nanotubesp. 14
1.7 6HB Tile Nanotubesp. 16
1.8 Applicationsp. 18
1.9 Summary and Perspectivesp. 19
Referencesp. 20
2 Nucleic Acid Nanoparticlesp. 23
2.1 Introductionp. 23
2.2 The Chemical and Physical Properties of Therapeutic DNAp. 25
2.3 Preparation of Nucleic Acid Nanoparticles: Synthesis and Characterizationp. 27
2.3.1 Rationalep. 27
2.3.2 Synthesis, Characterization and Optimization of Surfactantsp. 31
2.3.3 Organization of the Surfactant-DNA Complexesp. 35
2.3.4 Quantification of the Stability of Surfactant-DNA Complexesp. 35
2.4 DNA Functionalization for Cell Recognition and Internalizationp. 37
2.4.1 Strategies for Functionalizationp. 37
2.4.2 Intercalationp. 38
2.4.3 Triple Helix Formation with Oligodeoxyribonucleotidesp. 39
2.4.4 Peptide Nucleic Acids (PNAs)p. 41
2.4.5 Interactions of DNA with Fusion Proteinsp. 42
2.4.6 Agents that Bind to the Minor Groovep. 43
2.5 DNA Nanoparticles: Sophistication for Cell Recognition and Internalizationp. 43
2.5.1 Preparation of DNA Nanoparticles Enveloped with a Protective Coat and Cell Internalization Elementsp. 43
2.5.2 Biomedical Application: Cell Targeting and Internalization Properties of Folate-PEG-coated Nanoparticlesp. 46
2.6 Concluding Remarksp. 46
Referencesp. 47
3 Lipoplexesp. 51
3.1 Introductionp. 51
3.2 DNA Lipoplexesp. 51
3.2.1 Compositionp. 51
3.2.2 Nanostructure and Microstructurep. 52
3.2.2.1 Equilibrium Morphologyp. 52
3.2.2.2 Nonequilibrium Morphologyp. 55
3.2.2.3 Lipoplex Sizep. 57
3.2.3 Lipofection Efficiencyp. 57
3.2.3.1 In Vitrop. 57
3.2.3.2 In Vivop. 59
3.3 ODN Lipoplexesp. 60
3.4 siRNA Lipoplexesp. 62
Acknowledgmentsp. 62
Referencesp. 62
4 DNA-Chitosan Nanoparticles for Gene Therapy: Current Knowledge and Future Trendsp. 68
4.1 Introductionp. 68
4.2 Chitosan as a Carrier for Gene Therapyp. 69
4.2.1 Chitosan Chemistryp. 69
4.2.2 General Strategies for Chitosan Modificationp. 71
4.2.3 Chitosan-DNA interactions: Transfection Efficacy of Unmodified Chitosanp. 71
4.3 Modified Chitosans: Strategies to Improve the Transfection Efficacyp. 79
4.3.1 The Effects of Charge Density/Solubility and Degree of Acetylationp. 79
4.3.2 Improving the Physicochemical Characteristics of the Nanoparticulate Systems: Solubility, Aggregation and RES Uptakep. 80
4.3.3 Targeting Mediated by Cell Surface Receptorsp. 81
4.3.4 Hydrophobic Modification: Protecting the DNA and Improving the Internalization Processp. 83
4.4 Methods of Preparation of Chitosan Nanoparticlesp. 84
4.4.1 Complex Coacervationp. 84
4.4.2 Crosslinking Methodsp. 86
4.4.2.1 Chemical Crosslinkingp. 86
4.4.2.2 Ionic Crosslinking or Ionic Gelationp. 86
4.4.2.3 Emulsion Crosslinkingp. 87
4.4.2.4 Spray Dryingp. 88
4.4.2.5 Other Methodsp. 89
4.5 DNA Loading into Nano- and Microparticles of Chitosanp. 91
4.6 DNA Release and Release Kineticsp. 93
4.7 Preclinical Evidence of Chitosan-DNA Complex Efficacyp. 95
4.8 Potential Clinical Applications of Chitosan-DNA in Gene Therapyp. 97
4.9 Conclusionp. 99
Acknowledgmentsp. 99
Referencesp. 99
II Protein & Peptide-based Nanomaterialsp. 115
5 Plant Protein-based Nanoparticlesp. 117
5.1 Introductionp. 117
5.2 Description of Plant Proteinsp. 118
5.2.1 Pea Seed Proteinsp. 119
5.2.2 Wheat Proteinsp. 119
5.3 Preparation of Protein Nanoparticlesp. 120
5.3.1 Preparation of Legumin and Vicilin Nanoparticlesp. 121
5.3.2 Preparation of Gliadin Nanoparticlesp. 122
5.4 Drug Encapsulation in Plant Protein Nanoparticlesp. 124
5.4.1 RA Encapsulation in Gliadin Nanoparticlesp. 124
5.4.2 VE Encapsulation in Gliadin Nanoparticlesp. 125
5.4.3 Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulationp. 126
5.5 Preparation of Ligand-Gliadin Nanoparticle Conjugatesp. 127
5.6 Bioadhesive Properties of Gliadin Nanoparticlesp. 129
5.6.1 Ex Vivo Studies with Gastrointestinal Mucosal Segmentsp. 130
5.6.2 In Vivo Studies with Laboratory Animalsp. 131
5.7 Future Perspectivesp. 135
5.7.1 Size Optimizationp. 135
5.7.2 Immunization in Animalsp. 136
5.8 Conclusionp. 137
Referencesp. 137
6 Peptide Nanoparticlesp. 145
6.1 Introductionp. 145
6.2 Starting Materials for the Preparation of Nanoparticlesp. 146
6.3 Preparation Methodsp. 148
6.3.1 Nanoparticle Preparation by Emulsion Techniquesp. 148
6.3.1.1 Emulsion Technique for the Preparation of Albumin-based Microspheres and Nanoparticlesp. 148
6.3.1.2 Emulsion Technique for the Preparation of Gelatin-based Microspheres and Nanoparticlesp. 151
6.3.1.3 Emulsion Technique for the Preparation of Casein-based Microspheres and Nanoparticlesp. 153
6.3.2 Nanoparticle Preparation by Coacervationp. 154
6.3.2.1 Complex Coacervation Techniques for the Preparation of Nanoparticlesp. 154
6.3.2.2 Simple Coacervation (Desolvation) Techniques for the Preparation of Nanoparticlesp. 155
6.4 Basic Characterization Techniques for Peptide Nanoparticlesp. 159
6.5 Drug Targeting with Nanoparticlesp. 161
6.5.1 Passive Drug Targeting with Particle Systemsp. 163
6.5.2 Active Drug Targeting with Particle Systemsp. 163
6.5.3 Surface Modifications of Protein-based Nanoparticlesp. 164
6.5.4 Surface Modification by Different Hydrophilic Compoundsp. 164
6.5.5 Surface Modification by Polyethylene Glycol (PEG) Derivativesp. 165
6.5.6 Surface Modification by Drug-targeting Ligandsp. 166
6.5.7 Different Surface Modification Strategiesp. 168
6.6 Applications as Drug Carriers and for Diagnostic Purposesp. 169
6.6.1 Protein-based Nanoparticles in Gene Therapyp. 170
6.6.2 Parenteral Application Routep. 172
6.6.2.1 Preclinical Studies with Protein-based Particlesp. 172
6.6.2.2 Clinical Studies with Protein-based Particlesp. 172
6.6.3 Topical Application of Protein-based Particlesp. 174
6.6.4 Peroral Application of Protein-based Particlesp. 175
6.7 Immunological Reactions with Protein-based Microspheresp. 175
6.8 Concluding Remarksp. 176
Referencesp. 176
7 Albumin Nanoparticlesp. 185
7.1 Introductionp. 185
7.2 Serum Albuminp. 186
7.3 Preparation of Albumin Nanoparticlesp. 187
7.3.1 "Conventional" Albumin Nanoparticlesp. 188
7.3.1.1 Preparation of Albumin Nanoparticles by Desolvation or Coacervationp. 189
7.3.1.2 Preparation of Albumin Nanoparticles by Emulsificationp. 192
7.3.1.3 Other Techniques to Prepare Albumin Nanoparticlesp. 193
7.3.2 Surface-modified Albumin Nanoparticlesp. 193
7.3.3 Drug Encapsulation in Albumin Nanoparticlesp. 194
7.4 Biodistribution of Albumin Nanoparticlesp. 196
7.5 Pharmaceutical Applicationsp. 198
7.5.1 Albumin Nanoparticles for Diagnostic Purposesp. 198
7.5.1.1 Radiopharmaceuticalsp. 198
7.5.1.2 Echo-contrast Agentsp. 199
7.5.2 Albumin Nanoparticles as Carriers for Oligonucleotides and DNAp. 199
7.5.3 Albumin Nanoparticles in the Treatment of Cancerp. 201
7.5.3.1 Fluorouracil and Methotrexate Deliveryp. 201
7.5.3.2 Paclitaxel Deliveryp. 202
7.5.3.3 Albumin Nanoparticles in Suicide Gene Therapyp. 203
7.5.4 Magnetic Albumin Nanoparticlesp. 204
7.5.5 Albumin Nanoparticles for Ocular Drug Deliveryp. 205
7.5.5.1 Topical Drug Deliveryp. 205
7.5.5.2 Intravitreal Drug Deliveryp. 205
7.6 Concluding Remarksp. 207
Referencesp. 208
8 Nanoscale Patterning of S-Layer Proteins as a Natural Self-assembly Systemp. 219
8.1 Introductionp. 219
8.2 General Properties of S-Layersp. 220
8.2.1 Structure, Isolation, Self-Assembly and Recrystallizationp. 220
8.2.2 Chemistry and Molecular Biologyp. 221
8.2.3 S-Layers as Carbohydrate-binding Proteinsp. 223
8.3 Nanoscale Patterning of S-Layer Proteinsp. 224
8.3.1 Properties of S-Layer Proteins Relevant for Nanoscale Patterningp. 224
8.3.2 Immobilization of Functionalities by Chemical Methodsp. 225
8.3.3 Patterning by Genetic Approachesp. 226
8.3.3.1 The S-Layer Proteins SbsA, SbsB and SbsCp. 226
8.3.3.2 S-Layer Fusion Proteinsp. 228
8.4 Spatial Control over S-Layer Reassemblyp. 241
8.5 S-Layers as Templates for the Formation of Regularly Arranged Nanoparticlesp. 242
8.5.1 Binding of Molecules and Nanoparticles to Functional Domainsp. 242
8.5.2 In Situ Synthesis of Nanoparticles on S-Layersp. 244
8.6 Conclusions and Outlookp. 244
Acknowledgmentsp. 245
Referencesp. 245
III Pharmaceutically Important Nanomaterialsp. 253
9 Methods of Preparation of Drug Nanoparticlesp. 255
9.1 Introductionp. 255
9.2 Structures of Drug Nanoparticlesp. 257
9.3 Thermodynamic Approachesp. 257
9.3.1 Lipid-based Pharmaceutical Nanoparticlesp. 258
9.3.2 What is a Lipid?p. 259
9.3.3 Liquid Crystalline Phases of Hydrated Lipids with Planar and Curved Interfacesp. 260
9.3.4 Oil-in-water-type Lipid Emulsionp. 261
9.3.5 Liposomesp. 261
9.3.6 Cubosomes and Hexosomesp. 262
9.3.7 Other Lipid-based Pharmaceutical Nanoparticlesp. 263
9.4 Mechanical Approachesp. 264
9.4.1 Types of Processingp. 264
9.4.2 Characteristics of Wet Comminutionp. 266
9.4.3 Drying of Liquid Nanodispersionsp. 267
9.5 SCF Approachesp. 270
9.5.1 SCF Characteristicsp. 270
9.5.2 Classification of SCF Particle Formation Processesp. 271
9.5.3 RESSp. 272
9.5.4 SASp. 273
9.5.5 SEDSp. 274
9.6 Electrostatic Approachesp. 275
9.6.1 Electrical Potential and Interfacesp. 275
9.6.2 Electrosprayingp. 277
Referencesp. 280
10 Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Deliveryp. 287
10.1 Introductionp. 287
10.2 Concept of Differential Adsorptionp. 289
10.3 Production of SLNp. 292
10.4 Functionalization by Surface Modificationp. 294
10.5 Conclusionsp. 298
Referencesp. 299
11 Biocompatible Nanoparticulate Systems for Tumor Diagnosis and Therapyp. 304
11.1 Introductionp. 304
11.2 Nanoscale Particulate Systems and their Building Blocks/Componentsp. 305
11.2.1 Dendrimersp. 305
11.2.2 Buckyballs and Buckytubesp. 307
11.2.3 Quantum Dotsp. 309
11.2.4 Polymeric Micellesp. 310
11.2.5 Liposomesp. 310
11.3 Biodegradable Nanoparticlesp. 312
11.3.1 Preparation of Nanoparticlesp. 313
11.4 Biodegradable Optical Nanoparticlesp. 314
11.4.1 Optical Nanoparticles as a Potential Technology for Tumor Diagnosisp. 314
11.4.2 Optical Nanoparticles as a Potential Technology for Tumor Treatmentp. 315
11.5 Optical Imaging and PDTp. 317
11.5.1 Optical Imagingp. 317
11.5.1.1 Fluorescence-based Optical Imagingp. 317
11.5.1.2 NIR Fluorescence Imagingp. 317
11.5.1.3 NIR Dyes for Fluorescence Imagingp. 318
11.5.2 PDTp. 318
11.5.2.1 Basis of PDTp. 319
11.5.2.2 Photosensitizers for PDTp. 320
11.5.3 ICG: An Ideal Photoactive Agent for Tumor Diagnosis and Treatmentp. 320
11.5.3.1 Clinical Uses of ICGp. 320
11.5.3.2 Structure and Physicochemical Properties of ICGp. 321
11.5.3.3 Binding Properties of ICGp. 321
11.5.3.4 Metabolism, Excretion and Pharmacokinetics of ICGp. 322
11.5.3.5 Toxicity of ICGp. 322
11.5.3.6 Tumor Imaging with ICGp. 322
11.5.3.7 PDT with ICGp. 323
11.5.3.8 Limitations of ICG for Tumor Diagnosis and Treatmentp. 324
11.5.3.9 Recent Approaches for Improving the Blood Circulation Time and Uptake of ICG by Tumorsp. 325
11.5.3.10 Recent Approaches for ICG Stabilization In Vitrop. 326
11.6 PLGA-based Nanoparticulate Delivery System for ICGp. 327
11.6.1 Rationale of Using a PLGA-based Nanoparticulate Delivery System for ICGp. 327
11.6.2 In Vivo Pharmacokinetics of ICG Solutions and Nanoparticlesp. 331
11.7 Conclusions and Future Workp. 336
Referencesp. 338
12 Nanoparticles for Crossing Biological Membranesp. 349
12.1 Introductionp. 349
12.2 Cell Membranesp. 350
12.2.1 Functions of Biological Membranesp. 351
12.2.2 Kinetic and Thermodynamic Aspects of Biological Membranesp. 352
12.3 Problems of Drugs Crossing through Biological Membranesp. 354
12.3.1 Through the Skinp. 354
12.3.1.1 Mechanical Irritation of Skinp. 355
12.3.1.2 Low-voltage Electroporation of the Skinp. 355
12.3.2 Through the BBBp. 357
12.3.2.1 Small Drugsp. 359
12.3.2.1.1 Limitations of Small Drugsp. 359
12.3.2.2 Peptide Drug Delivery via SynB Vectorsp. 360
12.3.3 GI Barrierp. 360
12.3.3.1 Intestinal Translocation and Diseasep. 361
12.4 Nanoparticulate Drug Deliveryp. 362
2.4.1 Skinp. 363
12.4.1.1 Skin as Semipermeable Nanoporous Barrierp. 363
12.4.1.2 Hydrophilic Pathway through the Skin Barrierp. 363
12.4.2 Solid-Lipid Nanoparticles (SLN) Skin Deliveryp. 364
12.4.2.1 Chemical Stability of SLNp. 364
12.4.2.2 In Vitro Occlusion of SLNp. 365
12.4.2.3 In Vivo SLN: Occlusion, Elasticity and Wrinklesp. 365
12.4.2.4 Active Compound Penetration into the Skinp. 365
12.4.2.5 Controlled Release of Cosmetic Compoundsp. 365
12.4.2.6 Novel UV Sunscreen System Using SLNp. 366
12.4.3 Polymer-based Nanoparticulate Delivery to the Skinp. 366
12.4.4 Subcutaneous Nanoparticulate Antiepileptic Drug Deliveryp. 366
12.4.5 Nanoparticulate Anticancer Drug Deliveryp. 367
12.4.5.1 Paclitaxelp. 368
12.4.5.2 Doxorubicinp. 368
12.4.5.3 5-Fluorouracil (5-FU)p. 369
12.4.5.4 Antineoplastic Agentsp. 369
12.4.5.5 Gene Deliveryp. 369
12.4.5.6 Breast Cancerp. 370
12.4.6 Nanofibers Composed of Nonbiodegradable Polymerp. 370
12.4.6.1 Electrostatic Spinningp. 371
12.4.6.2 Scanning Electron Microscopyp. 371
12.4.6.3 Differential Scanning Calorimetry (DSC)p. 371
12.5 Nanoparticulate Delivery to the BBBp. 371
12.5.1 Peptide Delivery to the BBBp. 372
12.5.1.1 Peptide Conjugation through a Disulfide Bondp. 373
12.5.2 Biodegradable Polymer Based Nanoparticulate Delivery to BBBp. 373
12.5.3 Nanoparticulate Gene Delivery to the BBBp. 374
12.5.4 Mechanism of Nanoparticulate Drug Delivery to the BBBp. 375
12.5.5 Nanoparticulate Thiamine-coated Delivery to the BBBp. 376
12.5.6 Nanoparticle Optics and Living Cell Imagingp. 376
12.6 Oral Nanoparticulate Deliveryp. 378
12.6.1 Lectin-conjugated Nanoparticulate Oral Deliveryp. 379
12.6.2 Oral Peptide Nanoparticulate-based Deliveryp. 380
12.6.3 Polymer-Based Oral Peptide Nanoparticulate Deliveryp. 381
12.6.3.1 Polyacrylamide Nanospheresp. 381
12.6.3.2 Poly(alkyl cyanoacrylate) PACA Nanocapsulesp. 381
12.6.3.3 Derivatized Amino Acid Microspheresp. 382
12.6.4 Lymphatic Oral Nanoparticulate Deliveryp. 382
12.6.5 Oral Nanosuspension Deliveryp. 383
12.6.6 Mucoadhesion of Nanoparticles after Oral Administrationp. 384
12.6.7 Protein Nanoparticulate Oral Deliveryp. 384
Referencesp. 385
Indexp. 394